Browse

You are looking at 61 - 70 of 136 items for :

  • Pharmacology x
  • Refine by Access: All Content x
Clear All

Abstract

Objective—To determine the pharmacokinetics and safety of meloxicam in rabbits when administered orally for 29 days.

Animals—6 healthy rabbits.

Procedures—Meloxicam (1.0 mg/kg, PO, q 24 h) was administered to rabbits for 29 days. Blood was collected immediately before (time 0) and 2, 4, 6, 8, and 24 hours after drug administration on days 1, 8, 15, 22, and 29 to evaluate the pharmacokinetics of meloxicam. On day 30, an additional sample was collected 36 hours after treatment. Plasma meloxicam concentrations were quantified with liquid chromatography–mass spectrometry, and noncompartmental pharmacokinetic analysis was performed. Weekly plasma biochemical analyses were performed to evaluate any adverse physiologic effects. Rabbits were euthanatized for necropsy on day 31.

Results—Mean ± SD peak plasma concentrations of meloxicam after administration of doses 1, 8, 15, 22, and 29 were 0.67 ± 0.19 μg/mL, 0.81 ± 0.21 μg/mL, 1.00 ± 0.31 μg/mL, 1.00 ± 0.29 μg/mL, and 1.07 ± 0.19 μg/mL, respectively; these concentrations did not differ significantly among doses 8 through 29. Results of plasma biochemical analyses were within reference ranges at all time points evaluated. Gross necropsy and histologic examination of tissues revealed no clinically relevant findings.

Conclusions and Clinical Relevance—Plasma concentrations of meloxicam for rabbits in the present study were similar to those previously reported in rabbits that received 1. 0 mg of meloxicam/kg, PO every 24 hours, for 5 days. Results suggested that a dosage of 1. 0 mg/kg, PO, every 24 hours for up to 29 days may be safe for use in healthy rabbits.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics and hemodynamic effects of trazodone after IV and oral administration in dogs and bioavailability after oral administration.

Animals—6 adult Beagles.

Procedures—Dogs received trazodone HCl (8 mg/kg) orally and IV in a randomized controlled crossover design. Blood samples were collected at various times after administration. Heart rates and indirectly measured blood pressures of dogs and plasma concentrations and pharmacokinetics of trazodone were determined.

Results—Following IV administration, the mean ± SD elimination half-life, apparent volume of distribution, and plasma total body clearance were 169 ± 53 minutes, 2.53 ± 0.47 L/kg, and 11.15 ± 3.56 mL/min/kg, respectively. Following oral administration, the mean ± SD elimination half-life and absolute bioavailability were 166 ± 47 minutes and 84.6 ± 13.2%, respectively. Maximum plasma concentration following oral administration was 1.3 ± 0.5 μ/mL, and time to maximum plasma concentration was 445 ± 271 minutes. After IV administration, all dogs immediately developed transient tachycardia (184.3 ± 8.0 beats/min), and 3 of 6 dogs developed aggression. Increase in heart rate was significantly associated with increase in plasma drug concentration following IV administration.

Conclusions and Clinical Relevance—Results of this study indicated oral administration of trazodone resulted in acceptable absolute bioavailability, with substantial variability in time to maximum plasma concentration. Individualized approaches in dosing intervals may be necessary for dogs receiving oral trazodone. An orally administered dose of 8 mg/kg was well tolerated in dogs; IV administration of a dose of 8 mg/kg caused substantial adverse effects, including tachycardia and behavior disinhibition.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate antioxidant capacity and inflammatory cytokine gene expression in horses fed silibinin complexed with phospholipid.

Animals—5 healthy horses.

Procedures—Horses consumed increasing orally administered doses of silibinin phospholipid during 4 nonconsecutive weeks (0 mg/kg, 6.5 mg/kg, 13 mg/kg, and 26 mg/kg of body weight, twice daily for 7 days each week). Dose-related changes in plasma antioxidant capacity, peripheral blood cell glutathione concentration and antioxidant enzyme activities, and blood cytokine gene expression were evaluated.

Results—Plasma antioxidant capacity increased throughout the study period with increasing dose. Red blood cell nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase I activity decreased significantly with increasing doses of silibinin phospholipid. No significant differences were identified in glutathione peroxidase activity, reduced glutathione or oxidized glutathione concentrations, or expression of tumor necrosis factor α, interleukin-1, or interleukin-2.

Conclusions and Clinical Relevance—Minor alterations in antioxidant capacity of healthy horses that consumed silibinin phospholipid occurred and suggest that further study in horses with liver disease is indicated.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine the oral bioavailability, single and multidose pharmacokinetics, and safety of silibinin, a milk thistle derivative, in healthy horses.

Animals—9 healthy horses.

Procedures—Horses were initially administered silibinin IV and silibinin phospholipid orally in feed and via nasogastric tube. Five horses then consumed increasing orally administered doses of silibinin phospholipid during 4 nonconsecutive weeks (0 mg/kg, 6.5 mg/kg, 13 mg/kg, and 26 mg/kg of body weight, twice daily for 7 days each week).

Results—Bioavailability of orally administered silibinin phospholipid was 0.6% PO in feed and 2.9% via nasogastric tube. During the multidose phase, silibinin had nonlinear pharmacokinetics. Despite this, silibinin did not accumulate when given twice daily for 7 days at the evaluated doses. Dose-limiting toxicosis was not observed.

Conclusions and Clinical Relevance—Silibinin phospholipid was safe, although poorly bio-available, in horses. Further study is indicated in horses with hepatic disease.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To assess pharmacokinetics of pregabalin in horses after a single intragastric or IV dose.

Animals—5 healthy adult mares.

Procedures—Horses received 1 dose of pregabalin (approx 4 mg/kg) via nasogastric tube in a crossover-design study; after a 3-week washout period, the same dose was administered IV. Food was not withheld. Plasma pregabalin concentrations in samples obtained 0 to 36 hours after administration were measured by use of ultra-performance liquid chromatography with triple quadrupole tandem mass spectrometry. Pharmacokinetic variables were estimated by means of noncompartmental analysis.

Results—Mild sedation was observed in 2 horses following intragastric and IV pregabalin administration. Signs of mild, transient colic or behavioral abnormalities were observed in all horses following IV administration. After intragastric administration, median (range) maximal plasma concentration was 5.0 μg/mL (4.4 to 6.7 μg/mL), time to maximal plasma concentration was 1. 0 hour (0.5 to 2.0 hours), elimination half-life was 8.0 hours (6.2 to 9.4 hours), and area under the curve from time 0 to infinity (AUC0–∞) was 47.2 μg·h/mL (36.4 to 58.4 μg·h/mL). After IV administration, initial concentration was 22.2 μg/mL (19.8 to 27.7 μg/mL), elimination half-life was 7.74 hours (6.94 to 8.17 hours), and AUC0–∞ was 48.3 μg·h/mL (44.8 to 57.2 μg·h/mL). Bioavailability was 97.7% (80.7% to 109.8%). Median predicted values for minimal, mean, and maximal steady-state plasma concentrations after intragastric administration assuming an 8-hour dosing interval were 3.9, 5.3, and 6.3 μg/mL, respectively.

Conclusions and Clinical Relevance—At a simulated intragastric dosage of approximately 4 mg/kg every 8 hours, median pregabalin steady-state plasma concentration in healthy horses was within the therapeutic range reported for humans. Therapeutic concentrations and safety of this dosage have not been established in horses.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of meloxicam after IV and PO administration to 6 healthy sheep.

Animals—6 healthy adult Dorset cross sheep (5 males and 1 female).

Procedures—Meloxicam (0.5 mg/kg, IV, or 1.0 mg/kg, PO) was administered in a randomized crossover design with a 10-day washout period. Blood samples were collected at predetermined times over 96 hours. Serum drug concentrations were determined by high-pressure liquid chromatography with mass spectrometry. Computer software was used to estimate values of pharmacokinetic parameters through noncompartmental methods.

Results—Following IV administration (n = 5), the geometric mean (range) elimination half-life was 14.0 hours (10.5 to 17.0 hours), volume of distribution was 0.204 L/kg (0.171 to 0.272 L/kg), and clearance was 0.17 mL/min/kg (0.12 to 0.27 mL/min/kg). Following oral administration (n = 6), maximum serum concentration was 1.72 μg/mL (1.45 to 1.93 μg/mL), time to maximum serum concentration was 19.0 hours (12.0 to 24.0 hours), clearance per bioavailability was 0.22 mL/min/kg (0.16 to 0.30 mL/min/kg), and terminal half-life was 15.4 hours (13.2 to 17.7 hours). Bioavailability of orally administered meloxicam was calculated as 72% (40% to 125%; n = 5). No adverse effects were evident following meloxicam administration via either route.

Conclusions and Clinical Relevance—Meloxicam administered PO at 1.0 mg/kg has good bioavailability with slow elimination kinetics in sheep. These data suggested that meloxicam may be clinically useful, provided the safety and analgesic efficacy of meloxicam as well as feed-related influences on its pharmacokinetics are established in ruminants.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of meloxicam (1 mg/kg) in rabbits after oral administration of single and multiple doses.

Animals—6 healthy rabbits.

Procedures—A single dose of meloxicam (1 mg/kg, PO) was administered to the rabbits. After a 10-day washout period, meloxicam (1 mg/kg, PO) was administered to rabbits every 24 hours for 5 days. Blood samples were obtained from rabbits at predetermined intervals during both treatment periods. Plasma meloxicam concentrations were determined, and noncompartmental pharmacokinetic analysis was performed.

Results—The mean peak plasma concentration and area under the plasma concentration-versus-time curve extrapolated to infinity after administration of a single dose of meloxicam were 0.83 μg/mL and 10.37 h•μg/mL, respectively. After administration of meloxicam for 5 days, the mean peak plasma concentration was 1.33 μg/mL, and the area under the plasma concentration-versus-time curve from the time of administration of the last dose to 24 hours after that time was 18.79 h•μg/mL. For single- and multiple-dose meloxicam experiments, the mean time to maximum plasma concentration was 6.5 and 5.8 hours and the mean terminal half-life was 6.1 and 6.7 hours, respectively.

Conclusions and Clinical Relevance—Plasma concentrations of meloxicam for rabbits in the present study were proportionally higher than those previously reported for rabbits receiving 0.2 mg of meloxicam/kg and were similar to those determined for animals of other species that received clinically effective doses. A dose of 1 mg/kg may be necessary to achieve clinically effective circulating concentrations of meloxicam in rabbits, although further studies are needed.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To establish pharmacokinetics of robenacoxib after administration to cats via the IV, SC, and oral routes.

Animals—24 cats.

Procedures—In a crossover design, robenacoxib was administered IV, SC, and orally (experiment 1) and orally (experiment 2) to cats with different feeding regimens. Blood robenacoxib concentrations were assayed, with a lower limit of quantification of 3 ng/mL.

Results—In experiment 1, geometric mean pharmacokinetic values after IV administration of robenacoxib were as follows: blood clearance, 0.44 L/kg/h; plasma clearance, 0.29 L/kg/h; elimination half-life, 1.49 hours; and volume of distribution at steady state (determined from estimated plasma concentrations), 0.13 L/kg. Mean bioavailability was 69% and median time to maximum concentration (Cmax) was 1 hour for cats after SC administration of robenacoxib, whereas mean bioavailability was 49% and 10% and median time to Cmax was 1 hour and 30 minutes after oral administration to cats after food withholding and after cats were fed their entire ration, respectively. In experiment 2, geometric mean Cmax was 1,159, 1,201, and 692 ng/mL and area under the curve from 0 to infinity was 1,337, 1,383, and 1,069 ng × h/mL following oral administration to cats after food withholding, cats fed one-third of the daily ration, and cats fed the entire daily ration, respectively.

Conclusions and Clinical Relevance—For treatment of acute conditions in cats, it is recommended to administer robenacoxib by IV or SC injection, orally after food withholding, or orally with a small amount of food to obtain optimal bioavailability and Cmax.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine pharmacokinetic and pharmacodynamic properties of midazolam after IV and IM administration in alpacas.

Animals—6 healthy alpacas.

Procedures—Midazolam (0.5 mg/kg) was administered IV or IM in a randomized crossover design. Twelve hours prior to administration, catheters were placed in 1 (IM trial) or both (IV trial) jugular veins for drug administration and blood sample collection for determination of serum midazolam concentrations. Blood samples were obtained at intervals up to 24 hours after IM and IV administration. Midazolam concentrations were determined by use of tandem liquid chromatography–mass spectrometry.

Results—Maximum concentrations after IV administration (median, 1,394 ng/mL [range, 1,150 to 1,503 ng/mL]) and IM administration (411 ng/mL [217 to 675 ng/mL]) were measured at 3 minutes and at 5 to 30 minutes, respectively. Distribution half-life was 18.7 minutes (13 to 47 minutes) after IV administration and 41 minutes (30 to 80 minutes) after IM administration. Elimination half-life was 98 minutes (67 to 373 minutes) and 234 minutes (103 to 320 minutes) after IV and IM administration, respectively. Total clearance after IV administration was 11.3 mL/min/kg (6.7 to 13.9 mL/min/kg), and steady-state volume of distribution was 525 mL/kg (446 to 798 mL/kg). Bioavailability of midazolam after IM administration was 92%. Peak onset of sedation occurred at 0.4 minutes (IV) and 15 minutes (IM). Sedation was significantly greater after IV administration.

Conclusions and Clinical Relevance—Midazolam was well absorbed after IM administration, had a short duration of action, and induced moderate levels of sedation in alpacas.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To describe the pharmacokinetics of N-acetylcysteine (NAC) in healthy cats after oral and IV administration.

Animals—6 healthy cats.

Procedures—In a crossover study, cats received NAC (100 mg/kg) via IV and oral routes of administration; there was a 4-week washout period between treatments. Plasma samples were obtained at 0, 5, 15, 30, and 45 minutes and 1, 2, 4, 8, 12, 24, 36, and 48 hours after administration, and NAC concentrations were quantified by use of a validated high-performance liquid chromatography–mass spectrometry protocol. Data were analyzed via compartmental and noncompartmental pharmacokinetic analysis.

Results—Pharmacokinetics for both routes of administration were best described by a 2-compartment model. Mean ± SD elimination half-life was 0.78 ± 0.16 hours and 1.34 ± 0.24 hours for the IV and oral routes of administration, respectively. Mean bioavailability of NAC after oral administration was 19.3 ± 4.4%.

Conclusions and Clinical Relevance—The pharmacokinetics of NAC for this small population of healthy cats differed from values reported for humans. Assuming there would be similar pharmacokinetics in diseased cats, dose extrapolations from human medicine may result in underdosing of NAC in cats with acute disease. Despite the low bioavailability, plasma concentrations of NAC after oral administration at 100 mg/kg may be effective in the treatment of chronic diseases.

Restricted access
in American Journal of Veterinary Research