Browse

You are looking at 61 - 70 of 148 items for :

  • Cardiovascular System x
  • Refine by Access: All Content x
Clear All

Abstract

Objective—To evaluate angiotensin I and angiotensin II rapid pressor response tests in healthy cats.

Animals—6 purpose-bred sexually intact male cats.

Procedures—Telemetric blood pressure (BP) implants were placed in all cats. After 2 weeks, cats were anesthetized for challenge with exogenous angiotensin I or angiotensin II. Continuous direct arterial BP was recorded during and immediately after IV administration of boluses of angiotensin I or angiotensin II at increasing doses. Blood pressure responses were evaluated for change in systolic BP (SBP), change in diastolic BP (DBP), and rate of increase of SBP by 4 observers.

Results—Following IV angiotensin I and angiotensin II administration, transient, dose-dependent increases in BP (mean ± SEM change in SBP, 25.7 ± 5.2 and 45.0 ± 9.1; change in DBP, 23.4 ± 4.7 mm Hg and 36.4 ± 7.8 mm Hg; for 100 ng of angiotensin I/kg and angiotensin II/kg, respectively) and rate of increase of SBP were detected. At angiotensin I and II doses < 2.0 ng/kg, minimal responses were detected, with greater responses at doses ranging from 20 to 1,000 ng/kg. A significant effect of observer was not found. No adverse effects were observed.

Conclusions and Clinical Relevance—The rapid pressor response test elicited dose-dependent, transient increases in SBP and DBP. The test has potential as a means of objectively evaluating the efficacy of various modifiers of the renin-angiotensin-aldosterone system in cats. Ranges of response values are provided for reference in future studies.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the platelet activation response before and after treatment with clopidogrel in horses.

Animals—12 healthy adult mares.

Procedures—In a masked study, horses (6/group) were randomly allocated to alternately receive placebo or clopidogrel via nasogastric tube at a loading dose of 4 mg/kg followed by 2 mg/kg every 24 hours. Blood samples were collected before and 72 hours after initiation of treatment for ADP- and collagen-induced light transmission aggregometry; determination of closure time in collagen-ADP cartridges; modified thrombelastography for comparison of maximal amplitudes generated by kaolin, reptilase, and reptilase plus ADP activation; and flow cytometric tests to detect platelet fibrinogen binding, P-selectin expression, and phosphatidylserine externalization before and after ex vivo stimulation with thrombin, convulxin, thrombin with convulxin, and calcium ionophore.

Results—Clopidogrel administration induced a significant decrease in mean aggregation response to 5μM and 10μM ADP stimulation; however, 2 horses had resistance to clopidogrel's inhibitory action. Significant differences after clopidogrel treatment were not found in any other tests of platelet function.

Conclusions and Clinical Relevance—Assays using commercially available reagents were configured to measure different variables of the platelet activation response; however, clopidogrel's platelet inhibitory action was only detected by ADP-induced light transmission aggregometry. Results also suggested that horses, like humans, have interindividual variability in response to clopidogrel that may influence the drug's clinical efficacy as an antiplatelet agent.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To validate the use of a human enzyme immunoassay (EIA) kit for measurement of plasma antidiuretic hormone (ADH) concentration in dogs and evaluate plasma ADH concentrations in dogs with congestive heart failure (CHF) attributable to acquired cardiac disease, compared with findings in healthy dogs.

Animals—6 healthy dogs and 12 dogs with CHF as a result of chronic degenerative valve disease or dilated cardiomyopathy.

Procedures—Plasma samples from the 6 healthy dogs were pooled and used to validate the EIA kit for measurement of plasma ADH concentration in dogs by assessing intra-assay precision, dilutional linearity, and spiking recovery. Following validation, plasma ADH concentrations were measured in the 6 healthy dogs and in the 12 dogs with CHF for comparison.

Results—The EIA kit measured ADH concentrations in canine plasma samples with acceptable intra-assay precision, dilutional linearity, and spiking recovery. The intra-assay coefficient of variation was 11%. By use of this assay, the median plasma concentration of ADH in dogs with CHF was 6.15 pg/mL (SD, 3.2 pg/mL; range, 4.18 to 15.47 pg/mL), which was significantly higher than the median concentration in healthy dogs (3.67 pg/mL [SD, 0.93 pg/mL; range, 3.49 to 5.45 pg/mL]).

Conclusions and Clinical Relevance—Plasma ADH concentrations in dogs can be measured with the tested EIA kit. Plasma ADH concentrations were higher in dogs with CHF induced by acquired cardiac disease than in healthy dogs. This observation provides a basis for future studies evaluating circulating ADH concentrations in dogs with developing heart failure.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether a high dosage of pimobendan, when administered concurrently with moderate-dosage furosemide to healthy dogs, would activate the renin-angiotensin-aldosterone system (RAAS) more than furosemide alone.

Animals—12 healthy dogs.

Procedures—6 dogs received furosemide (2.0 mg/kg, PO, q 12 h) only, as an RAAS activator, for 10 days. The other 6 dogs received furosemide (2.0 mg/kg, PO, q 12 h) and pimobendan (0.6 mg/kg, PO, q 12 h) for 10 days. The effect of these drugs on the RAAS was determined by measurement of the aldosterone-to-creatinine ratio (A:C) in urine collected in the morning and evening of study days −2, −1, 1, 5, and 10.

Results—Although there was an increase in the urine A:C during the study period in both groups, it was significant only for dogs that received both drugs. The urine A:C only differed significantly between groups on day 1, at which time A:C was greater in the group that received both drugs.

Conclusions and Clinical Relevance—High-dosage pimobendan administration neither substantially suppressed nor potentiated the RAAS when administered with furosemide in healthy dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate left atrial phasic function in healthy dogs by means of 2-D speckle tracking echocardiography with time-left atrial area curve analysis and to assess repeatability and reproducibility of obtained measurements.

Animals—6 healthy Beagles.

Procedures—Each dog underwent echocardiography twice on different days (3 nonconsecutive examinations/d). Images were analyzed with offline software; area of the left atrium was automatically calculated in each frame throughout the cardiac cycle to derive time-left atrial area curves. Variables used to assess left atrial phasic function (total, passive, and active emptying area and emptying fractions and mean active and total emptying rates) were calculated. Agreement between variables measured via speckle tracking echocardiography and a manual tracing method was assessed with modified Bland-Altman analysis. Within-day and between-day coefficients of variation were determined.

Results—Mean ± SD total, passive, and active emptying fractions of the left atrium were 49.8 ± 3.5%, 277 ± 4.0%, and 30.5 ± 4.3%, respectively. Mean ± SD total and active emptying rates were 16.0 ± 2.5 cm2/s and 25.1 ± 4.9 cm2/s, respectively. Within-day and between-day coefficients of variation were < 20% (range, 0.41% to 16.4%) for all variables except mean active emptying rate (between-day coefficient of variation, 29.2%). Agreement between variables measured via speckle tracking echocardiography and the manual tracing method was good, and differences between methods were nonsignificant.

Conclusions and Clinical Relevance—Evaluation of left atrial phasic function via speckle tracking echocardiography was feasible; repeatability and reproducibility of measurements were adequate in healthy dogs. Studies are needed to determine clinical applicability in canine patients.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate effects of various imidazoline and nonimidazoline α-adrenergic agents on aggregation and antiaggregation of bovine and equine platelets.

Sample—Blood samples obtained from 8 healthy adult cattle and 16 healthy adult Thoroughbreds.

Procedures—Aggregation and antiaggregation effects of various imidazoline and nonimidazoline α-adrenergic agents on bovine and equine platelets were determined via a turbidimetric method. Collagen and ADP were used to initiate aggregation.

Results—Adrenaline, noradrenaline, or α-adrenoceptor agents alone did not induce changes in aggregation of bovine or equine platelets or potentiate ADP- or collagen-induced platelet aggregation. Adrenaline and the α2-adrenoceptor agonist clonidine had an inhibitory effect on ADP- and collagen-induced aggregation of bovine platelets. The α2-adrenoceptor antagonists phentolamine and yohimbine also inhibited collagen-induced aggregation of bovine platelets. Noradrenaline, other α-adrenoceptor agonists (xylazine, oxymetazoline, and medetomidine), and α-adrenoceptor antagonists (atipamezole, idazoxan, tolazoline, and prazosin) were less effective or completely ineffective in inhibiting ADP- and collagen-induced aggregation of bovine platelets. The imidazoline α2-adrenoceptor agonist oxymetazoline submaximally inhibited collagen-induced aggregation of equine platelets, and the α2-adrenoceptor antagonist idazoxan, along with phentolamine and yohimbine, also inhibited collagen-induced aggregation of equine platelets. The imidazoline compound antazoline inhibited both ADP- and collagen-induced aggregation of equine platelets.

Conclusions and Clinical Relevance—Several drugs had effects on aggregation of platelets of cattle and horses, and effective doses of ADP and collagen also differed between species. The α2-adrenoceptor agonists (xylazine and medetomidine) and antagonists (tolazoline and atipamezole) may be used by bovine and equine practitioners without concern for adverse effects on platelet function and hemostasis.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether pimobendan has in vitro antithrombotic properties through inhibition of platelets in canine blood samples.

Animals—10 healthy adult dogs.

Procedures—Blood samples were collected from each dog into tubes containing hirudin or sodium citrate. Pimobendan was added to blood samples (final concentration, 0.0, 0.01, 0.1, 1.0, or 10.0μM) containing hirudin prior to undergoing collagen- and ADP-induced whole blood impedance aggregometry. Plasma thromboxane concentrations were measured after platelet aggregation. Pimobendan was also added to blood samples (0.0, 0.01, or 10.0μM) containing sodium citrate prior to thromboelastographic evaluation.

Results—Compared with findings for 0.0μM pimobendan, composite platelet aggregation (area under the curve [AUC]) and maximal platelet aggregation (aggregation units [AUs]) at 10.0μM pimobendan were significantly decreased for collagen-induced aggregation (AUC, 349.7 ± 58.4 vs 285.1 ± 72.2; maximal platelet aggregation, 196.2 ± 25.8 AUs vs 161.5 ± 38.0 AUs), and the AUC and velocity of aggregation at 10.0μM pimobendan were significantly decreased for ADP-induced aggregation (AUC, 268.5 ± 35.1 vs 213.4 ± 77.2; velocity of aggregation, 15.7 ± 2.9 AUs/min vs 11.8 ± 3.5 AUs/min). Pimobendan had no significant effect on plasma thromboxane concentration or thromboelastographic variables, regardless of concentration.

Conclusions and Clinical Relevance—In vitro, pimobendan had an antiplatelet effect in canine blood samples at a concentration 1,000-fold higher than that clinically achievable. These antiplatelet properties do not appear to contribute to the positive clinical profile of the drug in dogs. Pimobendan administration would not appear to confer a risk for bleeding and does not have to be avoided in dogs with thrombocytopenia or those concurrently receiving antiplatelet drugs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare myocardial cytokine expression in dogs with naturally occurring cardiac or systemic diseases and dogs without cardiac or systemic diseases (control dogs)

Sample—Myocardial tissue samples from 7 systemic disease-affected dogs (SDDs), 7 cardiac disease-affected dogs (CDDs), and 8 control dogs.

Procedures—mRNA expression of interleukin (IL)-1, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, transforming growth factor (TGF)-β1, TGF-β2, TGF-β3, and growth differentiation factor-15 in myocardial tissue samples obtained from CDDs, SDDs, and control dogs were analyzed via quantitative PCR assays.

Results—In control dogs, only mRNA for TNF-α, TGF-β1, and TGF-β3 was detected; concentrations were significantly higher in male than in female dogs. In SDDs and CDDs, all cytokines, growth factors, and growth differentiation factor-15 were expressed. Compared with findings in SDDs, IL-1, IL-6, IL-8, IL-10, TNF-α, and IFN-γ expression was significantly increased in CDDs; specifically, IL-1, IL-8, TNF-α, TGF-β1, and TGF-β3 expression was increased in the atria and IL-8, IL-10, TNF-α, and IFN-γ expression was increased in the ventricles of CDDs.

Conclusions and Clinical Relevance—Data suggested that the alterations in cytokine expression in SDDs and CDDs, compared with control dog findings, were a result of inflammatory system activation. The differences in cytokine expression in atria and ventricles between SDDs and CDDs were suggestive of different remodeling processes. A better knowledge of myocardial involvement in SDDs and of immune regulation in CDDs might beneficially affect morbidity and mortality rates and provide new treatment approaches.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare the degree of mRNA expression for matrix metalloproteinases (MMPs), tissue inhibitors (TIMPs), and lysyl oxidase in myocardial samples from dogs with cardiac and systemic diseases and from healthy control dogs.

Sample—Myocardial samples from the atria, ventricles, and septum of 8 control dogs, 6 dogs with systemic diseases, 4 dogs with dilated cardiomyopathy (DCM), and 5 dogs with other cardiac diseases.

Procedures—Degrees of mRNA expression for MMP-1, -2, -3, -9, and -13; TIMP-1, -2, -3, and -4; and lysyl oxidase were measured via quantitative real-time PCR assay. Histologic examination of the hearts was performed to identify pathological changes.

Results—In myocardial samples from control dogs, only TIMP-3 and TIMP-4 mRNA expression was detected, with a significantly higher degree in male versus female dogs. In dogs with systemic and cardiac diseases, all investigated markers were expressed, with a significantly higher degree of mRNA expression than in control dogs. Furthermore, the degree of expression for MMP-2, TIMP-1, and TIMP-2 was significantly higher in dogs with DCM than in dogs with systemic diseases and cardiac diseases other than DCM. Expression was generally greater in atrial than in ventricular tissue for MMP-2, MMP-13, and lysyl oxidase in samples from dogs with atrial fibrillation.

Conclusions and Clinical Relevance—Degrees of myocardial MMP, TIMP, and lysyl oxidase mRNA expression were higher in dogs with cardiac and systemic diseases than in healthy dogs, suggesting that expression of these markers is a nonspecific consequence of end-stage diseases. Selective differences in the expression of some markers may reflect specific pathogenic mechanisms and may play a role in disease progression, morbidity and mortality rates, and treatment response.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To measure platelet membrane–derived microparticle (PMP) content and thrombin-generating capacity of canine plasma subjected to specific processing and storage conditions.

Animals—31 clinically normal dogs (19 males and 12 females).

Procedures—Citrate-anticoagulated blood samples obtained from each dog were centrifuged at 2,500 × g to isolate platelet-poor plasma (PPP), then PPP was centrifuged at 21,000 × g to isolate microparticle-free plasma (MPF) and microparticle-enriched plasma (MPEP). Whole blood and paired samples of fresh and frozen-thawed PPP, MPF, and MPEP were dual labeled for flow cytometric detection of membrane CD61 (constitutive platelet antigen) and annexin V (indicating phosphatidylserine externalization). Platelets and PMPs were enumerated with fluorescent, size-calibrated beads. Thrombin generation in fresh and frozen-thawed PPP, MPF, and MPEP was measured via kinetic fluorometric assays configured with low tissue factor and low phospholipid concentrations.

Results—Initial centrifugation yielded PPP with < 0.5% the platelets of whole blood, with median counts of 413 PMPs/μL for males and 711 PMPs/μL for females. Sequential centrifugation resulted in a 10-fold concentration of PMPs in MPEP and virtually depleted PMPs from MPF. Thrombin generation depended on PMP content, with median endogenous thrombin potential of 0, 893, and 3,650 nmol•min for MPF, PPP, and MPEP, respectively. Freeze-thaw cycling caused significant increases in PMP counts and phosphatidylserine externalization.

Conclusions and Clinical Relevance—Canine PMPs were major determinants of thrombin-generating capacity; preanalytic variables influenced plasma PMP content. Processing conditions described here may provide a basis for characterization of PMPs in clinical studies of thrombosis in dogs.

Full access
in American Journal of Veterinary Research