Browse

You are looking at 51 - 60 of 151 items for :

  • Bone, Joint, and Cartilage x
  • Refine by Access: All Content x
Clear All

Abstract

Objective—To characterize medial femoral condyle (MFC) morphometrics and subchondral bone density patterns in Thoroughbred racehorses and to determine whether these variables differ between left and right limbs.

Sample—Stifle joints harvested from 6 Thoroughbred racehorses euthanized for reasons other than hind limb lameness.

Procedures—The distal portion of the left and right femurs of each cadaver was scanned via CT. Hounsfield units were converted to dipotassium phosphate equivalent densities through use of a phantom on each specimen. Medial femoral condyle width, length, height, and curvature; subchondral bone plate densities; and subchondral trabecular bone densities were analyzed in multiple sections in 5 frontal planes and 3 sagittal planes and were compared between left and right MFCs.

Results—MFC width, length, and height did not differ between left and right limbs. Regions of interest in the right caudoaxial subchondral bone plate and subchondral trabecular bone were significantly denser than their corresponding left regions of interest in the frontal and sagittal planes. A concavity in the otherwise convex articular surface of the cranial aspect of the MFC was identified in 11 of 12 specimens.

Conclusions and Clinical Relevance—A disparity was identified between left and right subchondral bone density patterns at the caudoaxial aspect of the MFC, which could be attributable to the repetitive asymmetric cyclic loading that North American Thoroughbred racehorses undergo as they race in a counterclockwise direction. The uneven region at the cranial aspect of the MFC could be associated with the development of subchondral bone cysts in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the maximum amount of flexion and extension of the carpal, tarsal, metacarpophalangeal, and metatarsophalangeal joints and the percentage duration of the stance and swing phases of the stride for horses walking on an underwater treadmill in various water depths.

Animals—9 healthy adult horses.

Procedures—Zinc oxide markers were placed on the forelimbs and hind limbs of the horses. Video was recorded of horses walking (0.9 m/s) on an underwater treadmill during baseline conditions (< 1 cm of water) or in various amounts of water (level of the metatarsophalangeal, tarsal, and stifle joints). Maximum amount of joint flexion and extension, range of motion (ROM), and the percentage durations of the stance and swing phases of the stride were determined with 2-D motion analysis software.

Results—The ROM was greater for all evaluated joints in any amount of water versus ROM for joints in baseline conditions (primarily because of increases in amount of joint flexion). The greatest ROM for carpal joints was detected in a tarsal joint water depth, for tarsal joints in a stifle joint water depth, and for metacarpophalangeal and metatarsophalangeal joints in metatarsophalangeal and tarsal joint water depths. As water depth increased, the percentage durations of the stance and swing phases of the stride significantly decreased and increased, respectively.

Conclusions and Clinical Relevance—Results of this study suggested that exercise on an underwater treadmill is useful for increasing the ROM of various joints of horses during rehabilitation and that the depth of water affects the amount of flexion and extension of joints.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate histomorphometric changes in the cartilage and subchondral bone of the third carpal bone associated with conditioning exercise in young Thoroughbreds.

Animals—Nine 18-month-old Thoroughbreds.

Procedures—Both third carpal bones of 9 horses (4 exercised spontaneously at pasture only and 5 given additional conditioning exercise beginning at a mean age of 3 weeks) were evaluated. Histomorphometric variables (hyaline and calcified cartilage thickness and collagen orientation; vascular channel area, number, and orientation; and osteochondral junction rugosity) of the third carpal bone, sampled at 4 dorsopalmar sites in the radial facet, were compared between the exercised and nonexercised groups.

Results—The vascular channel area measured at the 4 dorsopalmar sites was larger in the exercised group than in the control group, but none of the variables were significantly different between groups. Both groups had significant site-specific variations in all measured variables. Most importantly, the vascular channel area was highest in the most dorsal aspect.

Conclusions and Clinical Relevance—Results suggested that the mild exercise imposed in both groups during the developmental period appeared to be associated with an increase in the vascular channel area beneath the calcified cartilage layer in the third carpal bone. This increased vascular channel area could also be associated with high stress in the dorsal aspect of the radial facet, a region that is known to be vulnerable to osteochondral fragmentation.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics, pharmacodynamics, and safety of zoledronic acid in horses.

Animals—8 healthy horses.

Procedures—A single dose of zoledronic acid (0.057 mg/kg, IV) was administered during a 30-minute period. Venous blood was collected at several time points. Zoledronic acid concentration in plasma was measured by liquid chromatography–tandem mass spectrometry, and pertinent pharmacokinetic parameters were determined. Plasma was analyzed for total calcium, BUN, and creatinine concentrations and a marker for bone resorption (C-terminal telopeptides of type I collagen).

Results—Zoledronic acid was safely administered IV during a 30-minute period, and no adverse effects were observed. Plasma concentrations of zoledronic acid were consistent with a 2-compartment mammillary model. Plasma concentrations of zoledronic acid were detected for up to 8 hours after administration. Mean total calcium concentrations in plasma were less than the reference range 7 days after zoledronic acid administration. A marker for bone remodeling decreased in concentration after zoledronic acid administration and remained low for the 1-year duration of the study. No changes in BUN and creatinine concentrations were observed after zoledronic acid administration.

Conclusions and Clinical Relevance—Zoledronic acid was safely administered in healthy horses. Zoledronic acid is reported as the strongest bisphosphonate presently available, and studies evaluating potential benefits of zoledronic acid in horses with orthopedic conditions are warranted.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To identify proteins with differential expression between healthy dogs and dogs with stifle joint osteoarthritis secondary to cranial cruciate ligament (CCL) disease.

Sample—Serum and synovial fluid samples obtained from dogs with stifle joint osteoarthritis before (n = 10) and after (8) surgery and control dogs without osteoarthritis (9) and archived synovial membrane and articular cartilage samples obtained from dogs with stifle joint osteoarthritis (5) and dogs without arthritis (5).

Procedures—Serum and synovial fluid samples were analyzed via liquid chromatography–tandem mass spectrometry; results were compared against a nonredundant protein database. Expression of complement component 3 in archived tissue samples was determined via immunohistochemical methods.

Results—No proteins had significantly different expression between serum samples of control dogs versus those of dogs with stifle joint osteoarthritis. Eleven proteins (complement component 3 precursor, complement factor I precursor, apolipoprotein B-100 precursor, serum paraoxonase and arylesterase 1, zinc-alpha-2-glycoprotein precursor, serum amyloid A, transthyretin precursor, retinol-binding protein 4 precursor, alpha-2-macroglobulin precursor, angiotensinogen precursor, and fibronectin 1 isoform 1 preproprotein) had significantly different expression (> 2.0-fold) between synovial fluid samples obtained before surgery from dogs with stifle joint osteoarthritis versus those obtained from control dogs. Complement component 3 was strongly expressed in all (5/5) synovial membrane samples of dogs with stifle joint osteoarthritis and weakly expressed in 3 of 5 synovial membrane samples of dogs without stifle joint arthritis.

Conclusions and Clinical Relevance—Findings suggested that the complement system and proteins involved in lipid and cholesterol metabolism may have a role in stifle joint osteoarthritis, CCL disease, or both.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To develop an in vitro model of cartilage injury in full-thickness equine cartilage specimens that can be used to simulate in vivo disease and evaluate treatment efficacy.

Sample—15 full-thickness cartilage explants from the trochlear ridges of the distal aspect of the femur from each of 6 adult horses that had died from reasons unrelated to the musculoskeletal system.

Procedures—To simulate injury, cartilage explants were subjected to single-impact uniaxial compression to 50%, 60%, 70%, or 80% strain at a rate of 100% strain/s. Other explants were left uninjured (control specimens). All specimens underwent a culture process for 28 days and were subsequently evaluated histologically for characteristics of injury and early stages of osteoarthritis, including articular surface damage, chondrocyte cell death, focal cell loss, chondrocyte cluster formation, and loss of the extracellular matrix molecules aggrecan and types I and II collagen.

Results—Compression to all degrees of strain induced some amount of pathological change typical of clinical osteoarthritis in horses; however, only compression to 60% strain induced significant changes morphologically and biochemically in the extracellular matrix.

Conclusions and Clinical Relevance—The threshold strain necessary to model injury in full-thickness cartilage specimens from the trochlear ridges of the distal femur of adult horses was 60% strain at a rate of 100% strain/s. This in vitro model should facilitate study of pathophysiologic changes and therapeutic interventions for osteoarthritis.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To characterize serum trace mineral, sex steroid hormone, and vitamin D concentrations and identify factors associated with metacarpophalangeal and metatarsophalangeal hyperextension in llamas and alpacas.

Samples—Serum samples from 79 llamas and 15 alpacas and owner survey data for 573 llamas and 399 alpacas.

Procedures—Serum samples were stored at −20°C until analysis and were evaluated for trace mineral, vitamin D, estradiol, progesterone, and testosterone concentrations. Information regarding age of onset, number of affected animals in herd, feed and supplements given, type of housing, and management practices was obtained in an owner survey.

Results—Higher serum zinc and iron concentrations were associated with metacarpophalangeal and metatarsophalangeal hyperextension in camelids, compared with controls. In summer and fall months, vitamin D concentrations were significantly higher in affected camelids than controls. Overall prevalence was 13.3% in llamas, compared with 0.7% in alpacas. No management factors were found to be predictive of this condition. No other factors examined were associated with metacarpophalangeal and metatarsophalangeal hyperextension.

Conclusions and Clinical Relevance—Despite similar supplementation practices and environmental conditions between affected and unaffected animals, an association of high serum zinc, iron, and vitamin D concentrations in affected camelids, compared with controls, may indicate differences of intake or absorption of dietary supplements.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether incubation of cruciate ligament cells with acetylsalicylic acid, carprofen, meloxicam, or robenacoxib provides protection against apoptosis induced by sodium nitroprusside (SNP).

Sample—Explants of cranial (CCL) and caudal (CaCL) cruciate ligaments from eight 1-day-old Beagles.

Procedures—Primary cultures of CCL and CaCL cells were created via enzymatic dissociation of cruciate explants. Purified cell cultures were incubated for 2 hours without (controls) or with 1 of 3 concentrations of 1 of 4 NSAIDs (10, 100, or 200 μg of acetylsalicylic acid/mL; 0.1, 1, or 10 μg of carprofen/mL; 0.1, 1, or 10 μg of meloxicam/mL; or 0.1, 1, or 10 μg of robenacoxib/mL) and subsequently incubated for 18 hours with 1 of 3 concentrations of SNP in an attempt to induce mild, moderate, or severe cytotoxic effects. Cell viability and apoptosis were analyzed via a cell proliferation assay and flow cytometry, respectively. Prostaglandin E2 concentrations were measured via an ELISA.

Results—Cytoprotective effects of NSAIDs were dependent on the extent of SNP-induced apoptosis and were greatest in CCL and CaCL cell cultures with moderate SNP-induced cytotoxic effects. Preincubation with an NSAID improved cell viability by 15% to 45% when CCL and CaCL cells were subsequently incubated with SNP. Carprofen (10 μg/mL) had the greatest cytoprotective effects for CCL and CaCL cells. Incubation with NSAIDs resulted in a nonsignificant decrease in PGE2 production from SNP-damaged cells.

Conclusions and Clinical Relevance—Results indicated that carprofen, meloxicam, and robenacoxib may reduce apoptosis in cells originating from canine cruciate ligaments.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine morphological and mechanical properties of trabecular bone of horses with a bone fragility syndrome (BFS; including silicate-associated osteoporosis).

Sample—Cylindrical trabecular bone samples from the distal aspects of cadaveric third metacarpal bones of 39 horses (19 horses with a BFS [BFS bone samples] and 20 horses without a BFS [control bone samples]).

Procedures—Bone samples were imaged via micro-CT for determination of bone volume fraction; apparent and mean mineralized bone densities; and trabecular number, thickness, and separation. Bone samples were compressed to failure for determination of apparent elastic modulus and stresses, strains, and strain energy densities for yield, ultimate, and failure loads. Effects of BFS and age of horses on variables were determined.

Results—BFS bone samples had 25% lower bone volume fraction, 28% lower apparent density, 18% lower trabecular number and thickness, and 16% greater trabecular separation versus control bone samples. The BFS bone samples had 22% lower apparent modulus and 32% to 33% lower stresses, 10% to 18% lower strains, and 41 % to 52% lower strain energy densities at yield, ultimate, and failure loads, compared with control bone samples. Differences between groups of bone samples were not detected for mean mineral density and trabecular anisotropy.

Conclusions and Clinical Relevance—Results suggested that horses with a BFS had osteopenia and compromised trabecular bone function, consistent with bone deformation and pathological fractures that develop in affected horses. Effects of this BFS may be systemic, and bones other than those that are clinically affected had changes in morphological and mechanical properties.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine concentration-dependent effects of tiludronate on cartilage explants incubated with or without recombinant equine interleukin-1β (rEq IL-1).

Sample—Articular cartilage explants from the femorotibial joints of 3 young adult horses.

Procedures—Cartilage explants were incubated with 1 of 6 concentrations (0, 0.19, 1.9, 19, 190, or 1,900 mg/L) of tiludronate and with or without rEq IL-1 (0.01 ng/mL) for 96 hours. Prostaglandin E2 (PGE2) concentrations in culture medium and explant digests were analyzed via PGE2 enzyme immunoassay. Sulfated glycosaminoglycan (sGAG) concentrations in culture medium were quantified via 1,9-dimethylmethylene blue assay. Chondrocyte apoptosis in paraffin embedded explant sections was measured via terminal deoxynucleotidyl transferase-mediated dUTP nick end–labeling assay. Relative gene expression of matrix metalloproteinases (MMPs), interleukin (IL)-6, and IL-8 was determined via the comparative cycle threshold method.

Results—rEq IL-1 increased PGE2 concentration, sGAG release from explants, chondrocyte apoptosis, and MMP gene expression. Lower tiludronate concentrations reduced rEq IL-1–induced sGAG release and chondrocyte apoptosis, whereas the higher tiludronate concentrations increased sGAG release and chondrocyte apoptosis. At the highest tiludronate concentration evaluated, IL-8 gene expression was increased independent of whether rEq IL-1 was present.

Conclusions and Clinical Relevance—Tiludronate had biphasic concentration-dependent effects on cartilage explants that were independent of PGE2 secretion or MMP gene expression. Low tiludronate concentrations had some chondroprotective effects, whereas high tiludronate concentrations were detrimental to equine articular cartilage. Administration of tiludronate intra-articularly to horses may be detrimental, dependent on the dose used. In vivo studies are needed before intra-articular tiludronate administration to horses can be recommended.

Full access
in American Journal of Veterinary Research