Browse
Abstract
Objective—To compare the efficacy of gamithromycin with that of tulathromycin for control of undifferentiated bovine respiratory disease complex (BRDC) in feedlot calves.
Animals—2,529 weaned crossbred beef calves.
Procedures—At each of 2 feedlots, calves at risk of developing BRDC were administered a single dose of gamithromycin (6.0 mg/kg, SC; n = 1,263) or tulathromycin (2.5 mg/kg, SC; 1,266) metaphylactically. Health (BRDC morbidity, mortality, case-fatality, and retreatment rates) and performance (average daily gain, dry matter intake, and feed-to-gain ratio) outcomes were compared between treatments via classical hypothesis testing. Bioequivalence limits for gamithromycin and tulathromycin were established for outcomes for which no significant difference between treatments was detected.
Results—Mean BRDC morbidity rate (31.0%) for calves administered gamithromycin was greater than that (22.9%) for calves administered tulathromycin; otherwise, health and performance did not differ between treatments. Limits for mean differences within which gamithromycin was considered bioequivalent to tulathromycin were ± 10% for BRDC retreatment rate, ± 3.5% for BRDC mortality rate, ± 16% for case-fatality rate, ± 37 kg for final body weight, ± 0.1 kg/d for average daily gain, ± 0.3 kg/d for dry matter intake, and ± 0.7 for feed-to-gain ratio.
Conclusions and Clinical Relevance—The efficacy of gamithromycin did not differ from that of tulathromycin for all outcomes except morbidity rate; calves administered gamithromycin had a higher BRDC morbidity rate than did calves administered tulathromycin. On the basis of the bioequivalence limits established for this dataset, gamithromycin was considered equivalent to tulathromycin for the control of BRDC.
Abstract
Objective—To compare the efficacy of gamithromycin with that of tulathromycin for the treatment of undifferentiated bovine respiratory disease complex (BRDC) in feedlot calves.
Animals—1,049 weaned crossbred beef calves.
Procedures—At each of 6 feedlots, newly arrived calves with BRDC were administered a single dose of gamithromycin (6.0 mg/kg, SC; n = 523) or tulathromycin (2.5 mg/kg, SC; 526). Case-fatality and BRDC retreatment rates during the first 120 days after treatment, final body weight, and average daily gain (ADG), were compared between treatments. At 2 feedlots, calves were assigned clinical scores for 10 days after treatment to determine recovery rates for each treatment. Bioequivalence limits for gamithromycin and tulathromycin were calculated for outcomes for which there was no significant difference between treatments.
Results—Mean BRDC retreatment rate (17.7%) for calves administered gamithromycin was greater than that (9.0%) for calves administered tulathromycin. Mean case-fatality rate, final body weight, ADG, and clinical score 10 days after treatment did not differ significantly between treatments. Limits for mean differences within which gamithromycin was bioequivalent to tulathromycin were ± 2.4% for case-fatality rate, ± 13 kg for final body weight, and ± 0.1 kg/d for ADG.
Conclusions and Clinical Relevance—Calves administered gamithromycin had a higher BRDC retreatment rate than did calves administered tulathromycin; otherwise, the clinical efficacy did not differ between the 2 treatments for the treatment of BRDC in feedlot calves.
Abstract
Objective—To determine pharmacokinetics after oral administration of a single dose of terbinafine hydrochloride to Hispaniolan Amazon parrots (Amazona ventralis).
Animals—6 healthy adult Hispaniolan Amazon parrots.
Procedures—A single dose of terbinafine hydrochloride (60 mg/kg) was administered orally to each bird, which was followed immediately by administration of a commercially available gavage feeding formula. Blood samples were collected at the time of drug administration (time 0) and 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours after drug administration. Plasma concentrations of terbinafine were determined via high-performance liquid chromatography.
Results—Data from 1 bird were discarded because of a possible error in the dose of drug administered. After oral administration of terbinafine, the maximum concentration for the remaining 5 fed birds ranged from 109 to 671 ng/mL, half-life ranged from 6 to 13.5 hours, and time to the maximum concentration ranged from 2 to 8 hours. No adverse effects were observed.
Conclusions and Clinical Relevance—Analysis of the results indicated that oral administration of terbinafine at a dose of 60 mg/kg to Amazon parrots did not result in adverse effects and may be potentially of use in the treatment of aspergillosis. Additional studies are needed to determine treatment efficacy and safety.
Abstract
Objective—To compare the minimum inhibitory concentration (MIC) of cephapirin and ceftiofur with MICs of their active metabolites (desacetylcephapirin and desfuroylceftiofur) for selected mastitis pathogens.
Sample—488 mastitis pathogen isolates from clinically and subclinically affected cows in commercial dairy herds in Wisconsin.
Procedures—Agar dilution was used to determine MICs for Staphylococcus aureus (n = 98), coagulase-negative staphylococci (99), Streptococcus dysgalactiae (97), Streptococcus uberis (96), and Escherichia coli (98).
Results—All S aureus isolates were susceptible to cephapirin and ceftiofur. Most coagulase-negative staphylococci were susceptible to cephapirin and ceftiofur. For E coli, 50 (51.0%; cephapirin) and 93 (94.95%; ceftiofur) isolates were susceptible to the parent compounds, but 88 (89.8%) were not inhibited at the maximum concentration of desacetylcephapirin. All S dysgalactiae isolates were susceptible to ceftiofur and cephapirin, and consistent MICs were obtained for all compounds. Most S uberis isolates were susceptible to cephapirin and ceftiofur. Of 98 S aureus isolates classified as susceptible to ceftiofur, 42 (42.9%) and 51 (52%) were categorized as intermediate or resistant to desfuroylceftiofur, respectively. For 99 coagulase-negative staphylococci classified as susceptible to ceftiofur, 45 (45.5%) and 17 (17.2%) isolates were categorized as intermediate or resistant to desfuroylceftiofur, respectively. For all staphylococci and streptococci, 100% agreement in cross-classified susceptibility outcomes was detected between cephapirin and desacetylcephapirin. No E coli isolates were classified as susceptible to desacetylcephapirin.
Conclusions and Clinical Relevance—Differences in inhibition between parent compounds and their active metabolites may be responsible for some of the variation between clinical outcomes and results of in vitro susceptibility tests.
Abstract
Objective—To determine the tissue distribution of enrofloxacin after intramammary or simulated systemic administration in isolated perfused sheep udders by measuring its concentration at various sample collection sites.
Sample—26 udders (obtained following euthanasia) from 26 healthy lactating sheep.
Procedures—For each isolated udder, 1 mammary gland was perfused with warmed, gassed Tyrode solution. Enrofloxacin (1 g of enrofloxacin/5 g of ointment) was administered into the perfused gland via the intramammary route or systemically via the perfusion fluid (equivalent to a dose of 5 mg/kg). Samples of the perfusate were obtained every 30 minutes for 180 minutes; glandular tissue samples were obtained at 2, 4, 6, and 8 cm from the teat base after 180 minutes. The enrofloxacin content of the perfusate and tissue samples was analyzed via high-performance liquid chromatography with UV detection.
Results—After intramammary administration, maximun perfusate enrofloxacin concentration was detected at 180 minutes and, at this time, mean tissue enrofloxacin concentration was detected and mean tissue enrofloxacin concentration was 123.80, 54.48, 36.72, and 26.42 μg/g of tissue at 2, 4, 6, and 8 cm from the teat base, respectively. Following systemic administration, perfusate enrofloxacin concentration decreased with time and, at 180 minutes, tissue enrofloxacin concentrations ranged from 40.38 to 35.58 μg/g of tissue.
Conclusions and Clinical Relevance—By 180 minutes after administration via the intramammary or systemic route in isolated perfused sheep mammary glands, mean tissue concentration of enrofloxacin was greater than the minimum inhibitory concentration required to inhibit growth of 90% of many common mastitis pathogens in sheep. Use of either route of administration (or in combination) appears suitable for the treatment of acute mastitis in sheep.
Abstract
Objective—To determine the pharmacokinetics of a long-acting formulation of ceftiofur, ceftiofur crystalline-free acid (CCFA), following SC injection to Asian elephants (Elephas maxim us).
Animals—11 adult Asian elephants.
Procedures—Each elephant received CCFA (6.6 mg/kg, SC) in the area caudoventral to the base of an ear. Blood samples were collected from an ear vein immediately prior to and at 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 72, 96, 120, 144, and 168 hours after CCFA administration. Plasma concentrations of desfuroylceftiofur acetamide (the acetamide derivative of ceftiofur) were measured via ultrahigh-pressure liquid chromatography–tandem mass spectrometry. Data were analyzed via a noncompartmental pharmacokinetics approach.
Results—The mean ± SD maximum plasma concentration of desfuroylceftiofur acetamide was 1.36 ± 0.74 μg/mL and was detected at 4718 ± 31.30 hours. The mean ± SD area under the curve from time 0 to infinity was 2278 ± 55.8 μg•h/mL, and the mean residence time from time 0 to infinity was 158.2 ± 90.2 hours. The terminal elimination half-life associated with the slope of the terminal phase had a harmonic mean ± pseudo-SD of 83.36 ± 30.01 hours.
Conclusions and Clinical Relevance—Elephants tolerated CCFA at a dose of 6.6 mg/kg, SC, well. Dosing recommendations will depend on the mean inhibitory concentration of ceftiofur for each bacterial pathogen. Desfuroylceftiofur acetamide concentrations remained > 0.25 μg/mL for the entire 168-hour study period, which suggested CCFA would provide clinically relevant antimicrobial activity against certain pathogens for 7 to 10 days.
Abstract
Objective—To evaluate effects of a single dose of enrofloxacin (5 mg/kg, IV) on body temperature and tracheobronchial neutrophil count in healthy Thoroughbreds premedicated with interferon-α and undergoing long-distance transportation.
Animals—32 healthy Thoroughbreds.
Procedures—All horses received interferon-α (0.5 U/kg, sublingually, q 24 h) as an immunologic stimulant for 2 days before transportation and on the day of transportation. Horses were randomly assigned to receive enrofloxacin (5 mg/kg, IV, once; enrofloxacin group) or saline (0.9% NaCl) solution (50 mL, IV, once; control group) ≤ 1 hour before being transported 1,210 km via commercial vans (duration, approx 26 hours). Before and after transportation, clinical examination, measurement of temperature per rectum, and hematologic analysis were performed for all horses; a tracheobronchial aspirate was collected for neutrophil quantification in 12 horses (6/group). Horses received antimicrobial treatment after transportation if deemed necessary by the attending clinician.
Results—No adverse effects were associated with treatment. After transportation, WBC count and serum amyloid A concentration in peripheral blood samples and neutrophil counts in tracheobronchial aspirates were significantly lower in horses of the enrofloxacin group than in untreated control horses. Fever (rectal temperature, ≥ 38.5°C) after transportation was detected in 3 of 16 enrofloxacin group horses and 9 of 16 control horses; additional antimicrobial treatment was required in 2 horses in the enrofloxacin group and 7 horses in the control group.
Conclusions and Clinical Relevance—In horses premedicated with interferon-α, enrofloxacin appeared to provide better protection against fever and lower respiratory tract inflammation than did saline solution.
Abstract
Objective—To determine the pharmacokinetic properties of 1 IM injection of ceftiofur crystalline-free acid (CCFA) in American black ducks (Anas rubripes).
Animals—20 adult American black ducks (6 in a preliminary experiment and 14 in a primary experiment).
Procedures—Dose and route of administration of CCFA for the primary experiment were determined in a preliminary experiment. In the primary experiment, CCFA (10 mg/kg, IM) was administered to ducks. Ducks were allocated into 2 groups, and blood samples were obtained 0.25, 0.5, 1, 2, 4, 8, 12, 48, 96, 144, 192, and 240 hours or 0.25, 0.5, 1, 2, 4, 8, 24, 72, 120, 168, and 216 hours after administration of CCFA. Plasma concentrations of ceftiofur free acid equivalents (CFAEs) were determined by use of high-performance liquid chromatography. Data were evaluated by use of a naive pooled-data approach.
Results—The area under the plasma concentration versus time curve from 0 hours to infinity was 783 h•μg/mL, maximum plasma concentration observed was 13.1 μg/mL, time to maximum plasma concentration observed was 24 hours, terminal phase half-life was 32.0 hours, time that concentrations of CFAEs were higher than the minimum inhibitory concentration (1.0 μg/mL) for many pathogens of birds was 123 hours, and time that concentrations of CFAEs were higher than the target plasma concentration (4.0 μg/mL) was 73.3 hours.
Conclusions and Clinical Relevance—On the basis of the time that CFAE concentrations were higher than the target plasma concentration, a dosing interval of 3 days can be recommended for future multidose CCFA studies.
Abstract
Objective—To evaluate the impact of oxytetracycline exposure on horizontal transfer of an antimicrobial resistance plasmid.
Sample—Populations of Salmonella enterica subsp enterica serovar Typhimurium and Escherichia coli.
Procedures—Mixed populations of plasmid donor (Salmonella Typhimurium) and recipient (E coli) bacteria were assigned to 1 of 2 simulated oxytetracycline dosing regimens (high peak concentration-short elimination half-life [HC-SHL] or low peak concentration—long elimination half-life [LC-LHL]) or served as untreated control replicates. Donor, recipient, and transconjugant (E coli that acquired the plasmid) bacteria populations were quantified at 12, 24, and 36 hours after oxytetracycline administration by use of culture on selective bacterial growth media.
Results—The ratio of transconjugant to donor bacteria was significantly reduced in the oxytetracycline-exposed replicates, compared with the ratio for the control replicates, at 12 hours. At 24 and 36 hours, results for the HC-SHL regimens were not significantly different from results for the respective control replicates, and results for the LC-LHL regimens also were not significantly different from results for the respective control replicates. The oxytetracycline concentration at these time points (12 hours in the HC-SHL regimen and all 3 time points in the LC-LHL regimen) were in excess of the minimum inhibitory concentration of the recipient bacteria.
Conclusions and Clinical Relevance—Transfer of antimicrobial resistance plasmids may be suppressed in vitro by oxytetracycline exposure at concentrations greater than the minimum inhibitory concentration of the recipient bacteria.
Abstract
Objective—To determine whether joint lavage performed simultaneously with IV regional limb perfusion (IVRLP) reduces the effectiveness of IVRLP and to compare 2 types of tourniquets used for this procedure in horses.
Animals—11 adult horses.
Procedures—2 groups of 6 horses were tested by use of a pneumatic or an Esmarch tourniquet (1 horse was tested twice [once in each group]). Standing IVRLP with amikacin (500 mg) was performed for 30 minutes. Simultaneously, the metacarpophalangeal joint was lavaged with 2 L of lactated Ringer's solution and the egress fluids were collected. Samples of the distal interphalangeal joint synovial fluid and blood from the digital and jugular veins were collected at set time intervals. Amikacin concentrations in all fluids were determined via fluorescence polarization immunoassay.
Results—Less amikacin was measured in the systemic circulation with the Esmarch tourniquet than with the pneumatic tourniquet. Amikacin concentrations in the synovial fluid from the distal interphalangeal joints of the Esmarch tourniquet group ranged from 45.1 to 1,968 μg/mL and in the pneumatic tourniquet group ranged from 1.7 to 92.3 μg/mL after 30 minutes of IVRLP. Total loss of amikacin in the egress fluids from the joint lavage ranged from < 1.36 to 7.72 mg for the Esmarch tourniquet group and from < 1.20 to 1.75 mg for the pneumatic tourniquet group.
Conclusions and Clinical Relevance—On standing horses, IVRLP performed simultaneously with joint lavage resulted in negligible loss of amikacin in the egress lavage fluids. The Esmarch tourniquet was more effective in preventing loss of amikacin from the distal portion of the limb, easier to use, and less expensive than the pneumatic tourniquet.