Browse
Abstract
OBJECTIVE To evaluate pharmaceutical characteristics (strength or concentration, accuracy, and precision), physical properties, and bacterial contamination of fluconazole compounded products.
SAMPLE Fluconazole compounded products (30- and 240-mg capsules; 30- and 100-mg/mL oral suspensions) from 4 US veterinary compounding pharmacies.
PROCEDURES Fluconazole compounded products were ordered 3 times from each of 4 pharmacies at 7- or 10-day intervals. Generic fluconazole products (50- and 200-mg tablets; 10- and 40-mg/mL oral suspensions) served as references. Compounded products were evaluated at the time of receipt; suspensions also were evaluated 3 months later and at beyond-use dates. Evaluations included assessments of strength (concentration), accuracy, precision, physical properties, and bacterial contamination. Acceptable accuracy was defined as within ± 10% of the labeled strength (concentration) and acceptable precision as within ± 10%. Fluconazole was quantified by use of high-performance liquid chromatography.
RESULTS Physical characteristics of compounded products differed among pharmacies. Aerobic bacterial cultures yielded negative results. Capsules (30 and 240 mg) had acceptable accuracy (median, 96.3%; range, 87.3% to 135.2%) and precision (mean ± SD, 7.4 ± 6.0%). Suspensions (30 and 100 mg/mL) had poor accuracy (median, 73.8%; range, 53.9% to 95.2%) and precision (mean ± SD, 15.0 ± 6.9%). Accuracy and precision were significantly better for capsules than for suspensions.
CONCLUSIONS AND CLINICAL RELEVANCE Fluconazole compounded products, particularly suspensions, differed in pharmaceutical and physical qualities. Studies to evaluate the impact of inconsistent quality on bioavailability or clinical efficacy of compounded fluconazole products are indicated, and each study should include data on the quality of the compounded product evaluated.
Abstract
OBJECTIVE To determine plasma drug concentrations after IV administration of a bolus followed by continuous rate infusion (CRI) of sodium benzylpenicillin and ceftiofur sodium to healthy adult horses.
ANIMALS 6 Thoroughbred mares (3 to 9 years old; mean ± SD body weight, 544 ± 55 kg) with no history of recent antimicrobial treatment.
PROCEDURES Horses were used in 2 experiments conducted 14 days apart. For each experiment, horses were housed individually in stables, and catheters were placed bilaterally in both jugular veins for drug administration by CRI (left catheter) and for intermittent collection of blood samples (right catheter). Synovial fluid samples were obtained from carpal joints following ceftiofur administration to evaluate drug diffusion into articular spaces.
RESULTS Plasma concentrations above accepted minimum inhibitory concentrations for common pathogens of horses were achieved within 1 minute after bolus administration and remained above the minimum inhibitory concentration for 48 (ceftiofur) or 12 (benzylpenicillin) hours (ie, the duration of the CRI). Mean synovial fluid ceftiofur free acid equivalent concentrations were approximately 46% (range, 25.4% to 59.8%) of plasma concentrations at the end of infusion.
CONCLUSIONS AND CLINICAL RELEVANCE Compared with intermittent bolus administration, the loading dose and CRI used less drug but maintained high plasma concentrations for the duration of infusion. By use of pharmacological parameters derived in this study, a loading dose of 2.5 mg/kg and CRI of 200 μg/kg/h should achieve plasma ceftiofur concentrations of 4 μg/mL; a loading dose and CRI of 1.3 mg/kg and 2.5 μg/kg/h, respectively, should achieve plasma benzylpenicillin concentrations of 2 μg/mL.
Abstract
OBJECTIVE To compare antibacterial effects among 3 types of foam used with negative-pressure wound therapy (NPWT) in an ex vivo equine perfused wound model.
SAMPLES Abdominal musculocutaneous flaps from 6 equine cadavers.
PROCEDURES Each musculocutaneous flap was continuously perfused with saline (0.9% NaCl) solution. Four 5-cm circular wounds were created in each flap and contaminated with 106 CFUs of both Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA). After a 1-hour incubation period, 1 of 4 treatments (NPWT with silver-impregnated polyurethane foam [NPWT-AgPU], polyurethane foam [NPWT-PU], or polyvinyl alcohol foam [NPWT-PVA] or a nonadherent dressing containing polyhexamethylene biguanide without NPWT [control]) was randomly applied to each wound. An 8-mm punch biopsy specimen was obtained from each wound immediately before and at 6, 12, 18, and 24 hours after treatment application to determine the bacterial load for both P aeruginosa and MRSA.
RESULTS The bacterial load of P aeruginosa for the NPWT-PVA treatment was significantly lower than that for the other 3 treatments at each sampling time after application, whereas the bacterial load for the NPWT-AgPU treatment was significantly lower than that for the NPWT-PU and control treatments at 12 hours after application. The bacterial load of MRSA for the NPWT-PVA treatment was significantly lower than that for the other 3 treatments at each sampling time after application.
CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that wounds treated with NPWT-PVA had the greatest decrease in bacterial load; however, the effect of that treatment on wound healing needs to be assessed in vivo.
Abstract
OBJECTIVE To determine the concentration of tilmicosin in mammary gland secretions of dairy cows following administration of an experimental preparation once or twice during the dry period (45-day period immediately prior to calving during which cows are not milked) and to evaluate its efficacy for the treatment of cows with intramammary infections (IMIs) caused by Staphylococcus aureus at dry off (cessation of milking; first day of dry period), compared with that of an intramammary infusion of ceftiofur.
ANIMALS 172 cows.
PROCEDURES Milk samples were collected for microbiological culture 5 days before dry off and at calving and 15 and 30 days after calving. Cows with Staphylococcus IMIs were randomly assigned to receive an experimental preparation of tilmicosin (20 mg/kg, SC) once at dry off (n = 58) or at dry off and again 20 days later (56) or receive a long-acting intramammary preparation of ceftiofur (500 mg/mammary gland; 56) at dry off. Mammary gland secretions were collected from 5 cows in the tilmicosin-treated groups every 5 days after dry off until calving for determination of tilmicosin concentration.
RESULTS Mean maximum concentration of tilmicosin in mammary gland secretions ranged from 14.4 to 20.9 μg/mL after the first dose and was 17.1 μg/mL after the second dose. The bacteriologic cure rate was 100% for all 3 treatments. Tilmicosin was detectable for 0 and 18 days after calving in the milk of cows treated with 1 and 2 doses of tilmicosin, respectively.
CONCLUSIONS AND CLINICAL RELEVANCE Administration of an experimental preparation of tilmicosin (20 mg/kg, SC) once to dairy cows at dry off might be useful for the treatment of S aureus IMIs.
Abstract
OBJECTIVE To determine pharmacokinetics and adverse effects after voriconazole administration to cats and identify an oral dose of voriconazole for cats that maintains plasma drug concentrations within a safe and effective range.
ANIMALS 6 healthy cats.
PROCEDURES Voriconazole (1 mg/kg, IV) was administered to each cat (phase 1). Serial plasma voriconazole concentrations were measured for 24 hours after administration. Voriconazole suspension or tablets were administered orally at 4, 5, or 6 mg/kg (phase 2). Plasma voriconazole concentrations were measured for 24 hours after administration. Pharmacokinetics of tablet and suspension preparations was compared. Finally, an induction dose of 25 mg/cat (4.1 to 5.4 mg/kg, tablet formulation), PO, was administered followed by 12.5 mg/cat (2.05 to 2.7 mg/kg), PO, every 48 hours for 14 days (phase 3). Plasma voriconazole concentration was measured on days 2, 4, 8, and 15.
RESULTS Voriconazole half-life after IV administration was approximately 12 hours. Maximal plasma concentration was reached within 60 minutes after oral administration. A dose of 4 mg/kg resulted in plasma concentrations within the target range (1 to 4 μg/mL). Adverse effects included hypersalivation and miosis. During long-term administration, plasma concentrations remained in the target range but increased, which suggested drug accumulation.
CONCLUSIONS AND CLINICAL RELEVANCE Voriconazole had excellent oral bioavailability and a long half-life in cats. Oral administration of a dose of 12.5 mg/cat every 72 hours should be investigated. Miosis occurred when plasma concentrations reached the high end of the target range. Therefore, therapeutic drug monitoring should be considered to minimize adverse effects.
Abstract
OBJECTIVES To determine, following oral administration of famciclovir, pharmacokinetic (PK) parameters for 2 of its metabolites (penciclovir and BRL42359) in plasma and tears of healthy cats so that famciclovir dosage recommendations for the treatment of herpetic disease can be optimized.
ANIMALS 7 male domestic shorthair cats.
PROCEDURES In a crossover study, each of 3 doses of famciclovir (30, 40, or 90 mg/kg) was administered every 8 or 12 hours for 3 days. Six cats were randomly assigned to each dosage regimen. Plasma and tear samples were obtained at predetermined times after famciclovir administration. Pharmacokinetic parameters were determined for BRL42359 and penciclovir by compartmental and noncompartmental methods. Pharmacokinetic-pharmacodynamic (PK-PD) indices were determined for penciclovir and compared among all dosage regimens.
RESULTS Compared with penciclovir concentrations, BRL42359 concentrations were 5- to 11-fold greater in plasma and 4- to 7-fold greater in tears. Pharmacokinetic parameters and PK-PD indices for the 90 mg/kg regimens were superior to those for the 30 and 40 mg/kg regimens, regardless of dosing frequency. Penciclovir concentrations in tears ranged from 18% to 25% of those in plasma. Administration of 30 or 40 mg/kg every 8 hours achieved penciclovir concentrations likely to be therapeutic in plasma but not in tears. Penciclovir concentrations likely to be therapeutic in tears were achieved only with the two 90 mg/kg regimens.
CONCLUSIONS AND CLINICAL RELEVANCE In cats, famciclovir absorption is variable and its metabolism saturable. Conversion of BRL42359 to penciclovir is rate limiting. The recommended dosage of famciclovir is 90 mg/kg every 12 hours for cats infected with feline herpesvirus.
Abstract
OBJECTIVE To evaluate the effect of volume of IV regional limb perfusion (IVRLP) on amikacin concentrations in synovial and interstitial fluid of horses.
ANIMALS 8 healthy adult horses.
PROCEDURES Each forelimb was randomly assigned to receive IVRLP with 4 mL of amikacin sulfate solution (250 mg/mL) plus 56 mL (total volume, 60 mL) or 6 mL (total volume, 10 mL) of lactated Ringer solution. Horses were anesthetized, and baseline synovial and interstitial fluid samples were collected. A tourniquet was placed, and the assigned treatment was administered via the lateral palmar digital vein. Venous blood pressure in the distal portion of the limb was recorded. Additional synovial fluid samples were collected 30 minutes (just before tourniquet removal) and 24 hours after IVRLP began; additional interstitial fluid samples were collected 6 and 24 hours after IVRLP began.
RESULTS 30 minutes after IVRLP began, mean amikacin concentration in synovial fluid was significantly greater for the large-volume (459 μg/mL) versus small-volume (70 μg/mL) treatment. Six hours after IVRLP, mean concentration in interstitial fluid was greater for the large-volume (723 μg/mL) versus small-volume (21 μg/mL) treatment. Peak venous blood pressure after large-volume IVRLP was significantly higher than after small-volume IVRLP, with no difference between treatments in time required for pressure to return to baseline.
CONCLUSIONS AND CLINICAL RELEVANCE Study findings suggested that large-volume IVRLP would deliver more amikacin to metacarpophalangeal joints of horses than would small-volume IVRLP, without a clinically relevant effect on local venous blood pressure, potentially increasing treatment efficacy.
Abstract
OBJECTIVE To compare clinical disease and lung lesions in calves experimentally inoculated with Histophilus somni 5 days after metaphylactic administration of tildipirosin or tulathromycin.
ANIMALS Twenty-four 3-month-old Holstein and Holstein-crossbreed steers.
PROCEDURES Calves were randomly allocated to 3 groups of 8 calves. On day 0, calves in group 1 received tildipirosin (4 mg/kg, SC), calves in group 2 received tulathromycin (2.5 mg/kg, SC), and calves in group 3 received isotonic saline (0.9% NaCl) solution (1 mL/45 kg, SC; control). On day 5, calves were inoculated with 10 mL of a solution containing H somni strain 7735 (1.6 × 109 CFUs/mL, intrabronchially; challenge). Calves were clinically evaluated on days 5 through 8 and euthanized on day 8. The lungs were grossly evaluated for evidence of pneumonia, and bronchial secretion samples underwent bacteriologic culture.
RESULTS The mean clinical score for each group was significantly increased 12 hours after challenge, compared with that immediately before challenge, and was significantly lower for tildipirosin-treated calves on days 6, 7, and 8, compared with those for tulathromycin-treated and control calves. The mean percentage of lung consolidation for tildipirosin-treated calves was significantly lower than those for tulathromycin-treated and control calves. Histophilus somni was isolated from the bronchial secretions of some tulathromycin-treated and control calves but was not isolated from tildipirosin-treated calves.
CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that metaphylactic administration of tildipirosin to calves 5 days prior to H somni challenge prevented subsequent culture of the pathogen from bronchial secretions and was more effective in minimizing clinical disease and lung lesions than was metaphylactic administration of tulathromycin.
Abstract
OBJECTIVE To assess the pharmacokinetic properties of cefovecin in a cold-water teleost species.
ANIMALS 10 healthy adult copper rockfish (Sebastes caurinus), sex unknown.
PROCEDURES Cefovecin (16 mg/kg) was administered SC to the rockfish. Blood samples were collected at predetermined points for measurement of plasma cefovecin concentrations (3 samples/fish). Plasma cefovecin concentrations were measured via liquid chromatography with mass spectrometry. Pharmacokinetic analysis was performed by means of naïve pooled analysis and compartmental modeling. Plasma protein binding of cefovecin was determined by ultrafiltration.
RESULTS Cefovecin administration appeared to be well tolerated by the rockfish. Pharmacokinetic analysis resulted in a maximum plasma concentration of 104.8 μg/mL at 2.07 hours after administration. Plasma terminal half-life was 32.5 hours, and area under the curve was 5,132 h·g/mL. Plasma protein binding was low (< 10%) for plasma concentrations of 10 and 100 μg of cefovecin/mL when assessed at 7.8° and 20°C. Plasma concentrations > 1 μg/mL persisted for the full 7-day follow-up period.
CONCLUSIONS AND CLINICAL RELEVANCE SC administration of cefovecin to copper rockfish at a dose of 16 mg/kg yielded plasma concentrations > 1 μg/mL that persisted to 7 days, but some interindividual variability was observed. The low degree of plasma protein binding but high circulating concentration of free drug may allow an extended administration interval in rockfish. Studies are needed to assess the efficacy and safety of this dose in rockfish.
Abstract
OBJECTIVE To evaluate the pharmacokinetics and bioavailability of 2 doses of orbifloxacin in rabbits.
ANIMALS 6 healthy purpose-bred adult female New Zealand White rabbits (Oryctolagus cuniculus).
PROCEDURES Each of 3 rabbits received orbifloxacin at either 10 or 20 mg/kg, PO. Then, after a 1-week washout period, they received the same dose IV. Blood samples were collected from each rabbit at 0, 0.25, 0.5, 1, 2, 4, 6, 12, and 24 hours after drug administration. Plasma orbifloxacin concentration was measured with liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters were determined by noncompartmental analysis for data obtained following PO administration and noncompartmental and compartmental analyses for data obtained following IV administration.
RESULTS Following oral administration, the mean ± SD peak plasma orbifloxacin concentration was 1.66 ± 0.51 μg/mL for rabbits administered the 10 mg/kg dose and 3.00 ± 0.97 μg/mL for rabbits administered the 20 mg/kg dose and was attained at 2 hours after drug administration. The mean ± SD half-life of orbifloxacin in plasma was 7.3 ± 1.1 hours for rabbits administered the 10 mg/kg dose and 8.6 ± 0.55 hours for rabbits administered the 20 mg/kg dose. Mean bioavailability was 52.5% for rabbits administered the 10 mg/kg dose and 46.5% for rabbits administered the 20 mg/kg dose.
CONCLUSIONS AND CLINICAL RELEVANCE Results provided pharmacokinetic properties for 2 doses (10 mg/kg and 20 mg/kg) of orbifloxacin oral suspension in rabbits. Further studies are necessary to determine the protein-binding activity of orbifloxacin in rabbits before dosages for the treatment of common pathogens in this species are recommended.