Browse
Abstract
OBJECTIVES
To characterize the 3-D geometry of the equine larynx replicating laryngeal hemiplegia and 4 surgical interventions by use of CT under steady-state airflow conditions. Secondly, to use fluid mechanic principles of flow through a constriction to establish the relationship between measured airflow geometries with impedance for each surgical procedure.
SAMPLE
10 cadaveric horse larynges.
PROCEDURES
While CT scans were performed, inhalation during exercise conditions was replicated for each of the following 5 conditions: laryngeal hemiplegia, left laryngoplasty with ventriculocordectomy, left laryngoplasty with ipsilateral ventriculocordectomy and arytenoid corniculectomy, corniculectomy, and partial arytenoidectomy for each larynx while CT scans were performed. Laryngeal impedance was calculated, and selected cross-sectional areas were measured along each larynx for each test. Measured areas and constriction characteristics were analyzed with respect to impedance using a multilevel, mixed-effects model.
RESULTS
Incident angle, entrance coefficient, outlet coefficient, friction coefficient, orifice thickness, and surgical procedure were significantly associated with upper airway impedance in the bivariable model. The multivariate model showed a significant influence of incident angle, entrance coefficient, and surgical procedure on impedance; however, the orifice thickness became nonsignificant within the model.
CLINICAL RELEVANCE
Laryngeal impedance was significantly associated with the entrance configuration for each procedure. This suggested that the equine upper airway, despite having a highly complex geometry, adheres to fluid dynamic principles applying to constrictions within pipe flow. These underlying flow characteristics may explain the clinical outcomes observed in some patients, and lead to areas of improvement in the treatment of obstructive upper airway disease in horses.
Abstract
OBJECTIVE
To evaluate the efficacy of 2 different oxygen delivery strategies—intranasal and tracheal insufflation—on the inspired fraction of oxygen (FIO2) in standing horses and to determine the time needed for arterial oxygen partial pressure (PaO2) equilibration.
ANIMALS
6 healthy adult horses.
PROCEDURES
In this blinded, randomized crossover design study, horses were randomly assigned to receive oxygen via nasal cannula (group N) or transcutaneous tracheal catheter (group T). After placement of venous and arterial catheters, FIO2 was measured through a catheter placed into the distal portion of the trachea. After baseline measurements were obtained, horses received oxygen at up to 25 mL/kg/min for 1 hour via either intranasal or intratracheal catheter. The FIO2 and PaO2 were recorded at 5, 10, 15, 20, 25, 30, 45, and 60 minutes during and 5, 10, 15, 20, and 30 minutes after oxygen insufflation. Data were analyzed by use of a 2-way repeated measures ANOVA with Tukey-Kramer post hoc testing for pairwise comparisons (P < 0.05).
RESULTS
During oxygen administration, FIO2 and PaO2 increased significantly when compared with baseline, resulting in significantly higher values for group T (37.7 ± 2.4%; 214.6 ± 18 mm Hg) than for group N (34.3 ± 3.9%; 184.1 ± 11 mm Hg). The equilibration time was less than 10 minutes.
CLINICAL RELEVANCE
Intratracheal oxygen administration resulted in better oxygenation than nasal insufflation and should therefore be considered in standing horses that are experiencing severe respiratory compromise. The equilibration between FIO2 and PaO2 is rapid in adult horses.
Abstract
OBJECTIVE
To develop a method based on CT angiography and the maximum slope model (MSM) to measure regional lung perfusion in anesthetized ponies.
ANIMALS
6 ponies.
PROCEDURES
Anesthetized ponies were positioned in dorsal recumbency in the CT gantry. Contrast was injected, and the lungs were imaged while ponies were breathing spontaneously and while they were mechanically ventilated. Two observers delineated regions of interest in aerated and atelectatic lung, and perfusion in those regions was calculated with the MSM. Measurements obtained with a computerized method were compared with manual measurements, and computerized measurements were compared with previously reported measurements obtained with microspheres.
RESULTS
Perfusion measurements obtained with the MSM were similar to previously reported values obtained with the microsphere method. While ponies were spontaneously breathing, mean ± SD perfusion for aerated and atelectatic lung regions were 4.0 ± 1.9 and 5.0 ± 1.2 mL/min/g of lung tissue, respectively. During mechanical ventilation, values were 4.6 ± 1.2 and 2.7 ± 0.7 mL/min/g of lung tissue at end expiration and 4.1 ± 0.5 and 2.7 ± 0.6 mL/min/g of lung tissue at peak inspiration. Intraobserver agreement was acceptable, but interobserver agreement was lower. Computerized measurements compared well with manual measurements.
CLINICAL RELEVANCE
Findings showed that CT angiography and the MSM could be used to measure regional lung perfusion in dorsally recumbent anesthetized ponies. Measurements are repeatable, suggesting that the method could be used to determine efficacy of therapeutic interventions to improve ventilation-perfusion matching and for other studies for which measurement of regional lung perfusion is necessary.
Abstract
OBJECTIVE
To investigate the role of omega-3 polyunsaturated fatty acids (Ω-3)–derived proresolving lipid mediators (PRLM) in the resolution of mild airway inflammation in horses.
ANIMALS
20 horses with mild airway inflammation.
PROCEDURES
Horses previously eating hay were fed hay pellets (low Ω-3 content; n = 10) or haylage (high Ω-3 content; 9) for 6 weeks. Dust exposure was measured in the breathing zone with a real-time particulate monitor. Bronchoalveolar lavage (BAL) was performed at baseline, week 3, and week 6. The effect of PRLM on neutrophil apoptosis and efferocytosis was examined in vitro. BAL fluid inflammatory cell proportions, apoptosis of circulating neutrophils, efferocytosis displayed by alveolar macrophages, and plasma lipid concentrations were compared between groups fed low and high amounts of Ω-3 by use of repeated measures of generalized linear models.
RESULTS
Dust exposure was significantly higher with hay feeding, compared to haylage and pellets, and equivalent between haylage and pellets. BAL fluid neutrophil proportions decreased significantly in horses fed haylage (baseline, 11.8 ± 2.4%; week 6, 2.5 ± 1.1%) but not pellets (baseline, 12.1 ± 2.3%; week 6, 8.5% ± 1.7%). At week 6, horses eating haylage had significantly lower BAL neutrophil proportions than those eating pellets, and a significantly lower concentration of stearic acid than at baseline. PRLM treatments did not affect neutrophil apoptosis or efferocytosis.
CLINICAL RELEVANCE
Despite similar reduction in dust exposure, horses fed haylage displayed greater resolution of airway inflammation than those fed pellets. This improvement was not associated with increased plasma Ω-3 concentrations. Feeding haylage improves airway inflammation beyond that due to reduced dust exposure, though the mechanism remains unclear.
Abstract
OBJECTIVE
To measure changes in pulmonary perfusion during pulsed inhaled nitric oxide (PiNO) delivery in anesthetized, spontaneously breathing and mechanically ventilated ponies positioned in dorsal recumbency.
ANIMALS
6 adult ponies.
PROCEDURES
Ponies were anesthetized, positioned in dorsal recumbency in a CT gantry, and allowed to breathe spontaneously. Pulmonary artery, right atrial, and facial artery catheters were placed. Analysis time points were baseline, after 30 minutes of PiNO, and 30 minutes after discontinuation of PiNO. At each time point, iodinated contrast medium was injected, and CT angiography was used to measure pulmonary perfusion. Thermodilution was used to measure cardiac output, and arterial and mixed venous blood samples were collected simultaneously and analyzed. Analyses were repeated while ponies were mechanically ventilated.
RESULTS
During PiNO delivery, perfusion to aerated lung regions increased, perfusion to atelectatic lung regions decreased, arterial partial pressure of oxygen increased, and venous admixture and the alveolar-arterial difference in partial pressure of oxygen decreased. Changes in regional perfusion during PiNO delivery were more pronounced when ponies were spontaneously breathing than when they were mechanically ventilated.
CLINICAL RELEVANCE
In anesthetized, dorsally recumbent ponies, PiNO delivery resulted in redistribution of pulmonary perfusion from dependent, atelectatic lung regions to nondependent aerated lung regions, leading to improvements in oxygenation. PiNO may offer a treatment option for impaired oxygenation induced by recumbency.
Abstract
OBJECTIVE
To describe a retroesophagoscopic approach (ROSA) to nasopharyngoscopy and compare it with the conventional retroflexed endoscopic approach (REA).
ANIMALS
36 feline cadavers and 2 client-owned cats with nasopharyngeal disorders.
PROCEDURES
36 veterinarians participated in the experimental portion of the study involving feline cadavers. Each veterinarian performed the ROSA and REA to nasopharyngoscopy on a feline cadaver once, attempting to identify and biopsy 2 landmarks (soft palate and choanae) with each approach while time was recorded. Numeric scales were used to measure perceived ease of use and image quality for both techniques. Data were compared between approaches by an independent statistician. The ROSA approach was also used as part of the diagnostic workup for the 2 client-owned cats.
RESULTS
35 of the 36 (97%) veterinarians were able to identify and biopsy both landmarks using the ROSA, whereas 21 (58%) veterinarians were able to visualize both landmarks using the REA and 19 (53%) successfully biopsied the landmarks. Image quality for the soft palate was scored higher with the ROSA (median score, 7.5/10) than with the REA (4.5/10). The ROSA was fast and easy to perform. This approach was also successfully performed in the 2 client-owned cats with nasopharyngeal disorders, with no complications reported.
CONCLUSIONS AND CLINICAL RELEVANCE
The ROSA was found to be a fast, effective, and easy alternative endoscopic technique for assessment of the nasopharynx in cats. This approach may allow use of various instruments that could be relevant for interventional procedures. However, the ROSA was also invasive and should be considered for diagnostic and therapeutic purposes for selected indications only when REA is unsuccessful. (Am J Vet Res 2021;82:752–759)
Abstract
OBJECTIVE
To evaluate surfactant protein D (SP-D) concentrations in serum and bronchoalveolar lavage fluid (BALF) from young healthy horses on pasture or housed in a typical barn.
ANIMALS
20 young healthy horses.
PROCEDURES
Horses were randomly assigned to 1 of 2 groups (pasture, n = 10; barn, 10), and serum and BALF samples were collected for SP-D determination at baseline (all horses on pasture) and 2 weeks and 4 weeks after the barn group of horses was relocated from the pasture to the barn. Other evaluations included physical and tracheoscopic examinations. Findings were compared within and between groups.
RESULTS
Physical and tracheoscopic examinations, CBC, and serum biochemical analysis did not reveal evidence of respiratory disease, and no significant differences were present within and between groups. Serum SP-D concentrations did not significantly differ within and between groups, but BALF SP-D concentrations were significantly lower for the barn group at 2 weeks but not at 4 weeks, compared with baseline. The BALF SP-D concentration-to-BALF total protein concentration ratio was < 1.5 and did not significantly differ within and between groups.
CONCLUSIONS AND CLINICAL RELEVANCE
A mild decrease was evident in the concentration of SP-D in the BALF collected from young healthy horses after 2 weeks of exposure to a barn environment. The clinical importance of this finding remains to be determined.
Abstract
OBJECTIVE
To determine the pharmacokinetics of sodium iodide (NaI) following oral administration to preweaned dairy calves, and to assess the efficacy of NaI for prevention of bovine respiratory disease (BRD) in preweaned calves at a commercial calf-raising facility.
ANIMALS
434 healthy preweaned dairy calves.
PROCEDURES
In the first of 2 experimental trials, each of 7 calves received NaI (20 mg/kg, PO) once. Blood and nasal fluid samples were collected at predetermined times before (baseline) and for 72 hours after NaI administration for determination of iodine concentrations. Pharmacokinetic parameters were determined by noncompartmental analysis. In the second trial, 427 calves at a calf-raising facility were randomly assigned to receive NaI (20 mg/kg, PO, 2 doses 72 hours apart; n = 211) or serve as untreated controls (216). Health outcomes were compared between the 2 groups.
RESULTS
For all 7 calves in the pharmacokinetic trial, the iodine concentration in both serum and nasal fluid samples was significantly increased from the baseline concentration and exceeded the presumed therapeutic iodine concentration (6.35 μg/mL) throughout the sampling period. In the on-farm trial, the odds of being treated for BRD before weaning for NaI-treated calves were twice those for control calves (OR, 2.04; 95% CI, 1.38 to 3.00).
CONCLUSIONS AND CLINICAL RELEVANCE
Results suggested that, although oral administration of NaI (20 mg/kg) to preweaned dairy calves achieved iodine concentrations presumed to be effective in both serum and nasal fluid, it was not effective for prevention of BRD in preweaned calves at a commercial calf-raising facility.
Abstract
OBJECTIVE
To identify the degree of left arytenoid cartilage (LAC) abduction that allows laryngeal airflow similar to that in galloping horses, assess 2-D and 3-D biomechanical effects of prosthetic laryngoplasty on LAC movement and airflow, and determine the influence of suture position through the muscular process of the arytenoid cartilage (MPA) on these variables.
SAMPLE
7 equine cadaver larynges.
PROCEDURES
With the right arytenoid cartilage maximally abducted and inspiratory airflow simulated by vacuum, laryngeal airflow and translaryngeal pressure and impedance were measured at 12 incremental LAC abduction forces (0% to 100% [maximum abduction]) applied through laryngoplasty sutures passed caudocranially or mediolaterally through the left MPA. Cross-sectional area of the rima glottis and left-to-right angle quotient were determined from photographs at each abduction force; CT images were obtained at alternate forces. Arytenoid and cricoid cartilage markers allowed calculation of LAC roll, pitch, and yaw through use of Euler angles on 3-D reconstructed CT images.
RESULTS
Translaryngeal pressure and impedance decreased, and airflow increased rapidly at low abduction forces, then slowed until a plateau was reached at approximately 50% of maximum abduction force. The greatest LAC motion was rocking (pitch). Suture position through the left MPA did not significantly affect airflow data. Approximately 50% of maximum abduction force, corresponding to a left arytenoid angle of approximately 30° and left-to-right angle quotient of 0.79 to 0.84, allowed airflow of approximately 61 ± 6.5 L/s.
CONCLUSIONS AND CLINICAL RELEVANCE
Ex vivo modeling results suggested little benefit to LAC abduction forces > 50%, which allowed airflow similar to that reported elsewhere for galloping horses.
Abstract
OBJECTIVE To evaluate the lipidomic profile of surfactant obtained from horses with asthma at various clinical stages and to compare results with findings for healthy horses exposed to the same conditions.
SAMPLE Surfactant samples obtained from 6 horses with severe asthma and 7 healthy horses.
PROCEDURES Clinical evaluation of horses and surfactant analysis were performed. Samples obtained from horses with severe asthma and healthy horses before (baseline), during, and after exposure to hay were analyzed. Crude surfactant pellets were dried prior to dissolution in a solution of isopropanol:methanol:chloroform (4:2:1) containing 7.5mM ammonium acetate. Shotgun lipidomics were performed by use of high-resolution data acquisition on an ion-trap mass spectrometer. Findings were analyzed by use of an ANOVA with a Tukey-Kramer post hoc test.
RESULTS Results of lipidomic analysis were evaluated to detect significant differences between groups of horses and among exposure statuses within groups of horses. Significantly increased amounts of cyclic phosphatidic acid (cPA) and diacylglycerol (DAG) were detected in surfactant from severely asthmatic horses during exposure to hay, compared with baseline and postexposure concentrations. Concentrations of cPA and DAG did not change significantly in healthy horses regardless of exposure status.
CONCLUSIONS AND CLINICAL RELEVANCE cPA 16:0 and DAG 36:2 were 2 novel lipid mediators identified in surfactant obtained from asthmatic horses with clinical disease. These molecules were likely biomarkers of sustained inflammation. Further studies are needed to evaluate a possible correlation with disease severity and potential alterations in the plasma lipidomic profile of horses with asthma.