Browse
Abstract
OBJECTIVE
To evaluate with CT the characteristics of brain tissue disruption and skull damage in cadaveric heads of adult horses caused by each of 6 firearm-ammunition combinations applied at a novel anatomic aiming point.
SAMPLE
53 equine cadaveric heads.
PROCEDURES
Heads placed to simulate that of a standing horse were shot with 1 of 6 firearm-ammunition combinations applied at an aiming point along the external sagittal crest of the head where the 2 temporalis muscles form an inverted V. Firearm-ammunition combinations investigated included a .22-caliber long rifle pistol firing a 40-grain, plated lead, solid-core or hollow-point bullet (HPB); a semiautomatic 9-mm pistol firing a 115-grain, jacketed HPB; a semiautomatic .223-caliber carbine firing a 55-grain, jacketed HPB; a semiautomatic .45-caliber automatic Colt pistol firing a 230-grain, jacketed HPB; and a 12-gauge shotgun firing a 1-oz rifled slug. Additional heads placed in a simulated laterally recumbent position were shot with the semiautomatic 9-mm pistol–HPB combination. All heads underwent CT before and after being shot, and images were evaluated for projectile fragmentation, skull fracture, and cerebrum, cerebellum, and brainstem disruption.
RESULTS
Computed tomography revealed that all firearm-ammunition combinations caused disruption of the cerebrum, cerebellum, and brainstem that appeared sufficient to result in instantaneous death of a live horse. Hollow-point ammunition was as effective as solid-core ammunition with regard to brain tissue disruption. Brain tissue disruption was not affected by head positioning.
CONCLUSIONS AND CLINICAL RELEVANCE
Results indicated that the examined firearm-ammunition combinations, when applied at a novel aiming point, appear to be reasonable options for euthanasia of horses.
Abstract
OBJECTIVE
To assess the extent of damage to the skull and brain of cadaveric dairy goat kids caused by a .22-caliber, 16-g pellet fired from a multipump air pistol at various power levels.
SAMPLE
Cadavers of 8 male and 7 female dairy goat kids ≤ 5 days old.
PROCEDURES
Each cadaver was positioned in sternal recumbency with the head and neck extended on a straw bale. A multipump air pistol was held with the barrel perpendicular to and 2.5 cm from the head at the intersection of 2 imaginary lines that extended from the lateral canthus of each eye to the middle of the contralateral ear base and fired at half (5 pumps; n = 2), intermediate (7 pumps; 2), or full (10 pumps; 11) power. The head and neck were removed from the carcass for CT imaging and gross sectioning to determine the location of the pellet and extent of damage caused to the skull and brain.
RESULTS
The pellet successfully penetrated the skull of all 13 heads shot at full or intermediate power and 1 of the 2 heads shot at half power. The pellet did not fragment after entering the skull of any cadaver and penetrated the brainstem (necessary for instantaneous death) in only 7 cadavers.
CONCLUSIONS AND CLINICAL RELEVANCE
The described technique was insufficient for use as a stand-alone method for euthanizing young dairy goat kids. Modification of the technique warrants further research to determine whether air pistols can be used to effectively euthanize young goat kids.
Abstract
OBJECTIVE To determine the optimal anatomic site and directional aim of a penetrating captive bolt (PCB) for euthanasia of goats.
SAMPLE 8 skulls from horned and polled goat cadavers and 10 anesthetized horned and polled goats scheduled to be euthanized at the end of a teaching laboratory.
PROCEDURES Sagittal sections of cadaver skulls from 8 horned and polled goats were used to determine the ideal anatomic site and aiming of a PCB to maximize damage to the midbrain region of the brainstem for euthanasia. Anatomic sites for ideal placement and directional aiming were confirmed by use of 10 anesthetized horned and polled goats.
RESULTS Clinical observation and postmortem examination of the sagittal sections of skulls from the 10 anesthetized goats that were euthanized confirmed that perpendicular placement and firing of a PCB at the intersection of 2 lines, each drawn from the lateral canthus of 1 eye to the middle of the base of the opposite ear, resulted in consistent disruption of the midbrain and thalamus in all goats. Immediate cessation of breathing, followed by a loss of heartbeat in all 10 of the anesthetized goats, confirmed that use of this site consistently resulted in effective euthanasia.
CONCLUSIONS AND CLINICAL RELEVANCE Damage to the brainstem and key adjacent structures may be accomplished by firing a PCB perpendicular to the skull over the anatomic site identified at the intersection of 2 lines, each drawn from the lateral canthus of 1 eye to the middle of the base of the opposite ear.
Abstract
OBJECTIVE To determine the effects of stacked wedge pads and chains applied to the forefeet of Tennessee Walking Horses on behavioral and biochemical indicators of pain, stress, and inflamation.
ANIMALS 20 Tennessee Walking Horses.
PROCEDURES Horses were randomly assigned to 2 treatment groups: keg shoes (control; n = 10) or stacked wedge pads and exercise with chains (10). Ten days before treatment application, an accelerometer was attached at the left metatarsus of each horse to record daily activity. Horses were exercised for 20 minutes daily, beginning on day -7. On day 0, exercise ceased, the forefeet were trimmed, and the assigned treatment was applied. From days 1 through 5, horses were exercised as before. Blood samples for measurement of plasma cortisol, substance P, and fibrinogen concentrations were collected on days -5, 1, and 5 before and after exercise and every 30 minutes thereafter for 6 hours.
RESULTS No significant differences in plasma concentrations of cortisol, substance P, and fibrinogen were detected between groups. Although lying behaviors changed after shoes were applied, these behaviors did not differ significantly between groups. Shoeing appeared to have altered behavior to a greater extent than did the type of treatment applied.
CONCLUSIONS AND CLINICAL RELEVANCE Application of stacked wedge pads and chains to the forefeet of horses for a 5-day period as performed in this study evoked no acute or subacute stress or nociceptive response as measured. Although these findings should not be extrapolated to the long-term use of such devices in Tennessee Walking Horses performing the running walk, the data should be considered when making evidence-based decisions relating to animal welfare and the use of stacked wedge pads and chains.
Abstract
OBJECTIVE To compare intraosseous pentobarbital treatment (IPT) and thoracic compression (TC) on time to circulatory arrest and an isoelectric electroencephalogram (EEG) in anesthetized passerine birds.
ANIMALS 30 wild-caught adult birds (17 house sparrows [Passer domesticus] and 13 European starlings [Sturnus vulgaris]).
PROCEDURES Birds were assigned to receive IPT or TC (n = 6/species/group). Birds were anesthetized, and carotid arterial pulses were monitored by Doppler methodology. Five subdermal braided-wire electrodes were used for EEG. Anesthetic depth was adjusted until a continuous EEG pattern was maintained, then euthanasia was performed. Times from initiation of euthanasia to cessation of carotid pulse and irreversible isoelectric EEG (indicators of death) were measured. Data (medians and first to third quartiles) were summarized and compared between groups within species. Necropsies were performed for all birds included in experiments and for another 6 birds euthanized under anesthesia by TC (4 sparrows and 1 starling) or IPT (1 sparrow).
RESULTS Median time to isoelectric EEG did not differ significantly between treatment groups for sparrows (19.0 and 6.0 seconds for TC and IPT, respectively) or starlings (88.5 and 77.5 seconds for TC and IPT, respectively). Median times to cessation of pulse were significantly shorter for TC than for IPT in sparrows (0.0 vs 18.5 seconds) and starlings (9.5 vs 151.0 seconds). On necropsy, most (14/17) birds that underwent TC had grossly visible coelomic, pericardial, or perihepatic hemorrhage.
CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that TC might be an efficient euthanasia method for small birds. Digital pressure directly over the heart during TC obstructed venous return, causing rapid circulatory arrest, with rupture of the atria or vena cava in several birds. The authors propose that cardiac compression is a more accurate description than TC for this procedure.
Abstract
OBJECTIVE To use MRI and CT to compare the amount of tissue damage (soft tissue and bone) to the heads of goats after administration of a nonpenetrating or penetrating captive bolt.
ANIMALS Cadavers of twelve 1- to 5-year-old mixed-breed goats that had been euthanized with an overdose of pentobarbital as part of an unrelated study.
PROCEDURES Cadavers were randomly assigned to receive a nonpenetrating (n = 6) or penetrating (6) captive bolt. The head of 1 cadaver was imaged via CT and MRI. The muzzle of a device designed to administer either a penetrating or nonpenetrating captive bolt was then placed flush on the dorsal midline of each head at the level of the external occipital protuberance (poll) and aimed downward toward the cranialmost portion of the intermandibular space, and the assigned bolt was administered. Heads were removed, and CT and MRI of each head were performed. After imaging, each skull was transected along the sagittal plane to permit gross evaluation of central nervous tissue and obtain digital photographic images. In addition, 1 head that received a nonpenetrating captive bolt was further evaluated via blunt dissection and removal of adnexa from the external surface of the calvarium.
RESULTS MRI, CT, and dissection of skulls revealed severe skeletal and soft tissue damage after impact with the penetrating and nonpenetrating captive bolts.
CONCLUSIONS AND CLINICAL RELEVANCE The nonpenetrating captive bolt appeared to cause damage similar to that of the penetrating captive bolt in the cranium and soft tissues of the head in caprine cadavers. This damage suggested that administration of a nonpenetrating captive bolt as described here may be an acceptable method of euthanasia in goats.
Abstract
Objective—To evaluate physical methods for inducing death during the slaughter of American alligators (Alligator mississippiensis).
Animals—24 captive hatched-and-reared American alligators.
Procedures—Baseline electroencephalograms (EEGs) were obtained for awake and anesthetized alligators. Corneal reflex, spontaneous blinking, and EEGs were evaluated after severance of the spinal cord, severance of the spinal cord followed by pithing of the brain, application of a penetrating captive bolt, or application of a nonpenetrating captive bolt (6 alligators/group).
Results—Overall, alligators subjected to spinal cord severance alone differed from those subjected to the other techniques. Spinal cord severance alone resulted in postprocedure EEG power values greater than those in anesthetized alligators, whereas the postprocedure EEG power values were isoelectric for the other 3 techniques. Corneal reflex and spontaneous blinking were absent in all alligators immediately after application of a penetrating or nonpenetrating captive bolt. One of 6 alligators had a corneal reflex up to 1 minute after pithing, but all others within that group had immediate cessation of reflexes after pithing. Mean time to loss of spontaneous blinking and corneal reflex for alligators subjected to spinal cord severance alone was 18 minutes (range, 2 to 37 minutes) and 54 minutes (range, 34 to 99 minutes), respectively.
Conclusions and Clinical Relevance—Spinal cord severance followed by pithing of the brain and application of a penetrating or nonpenetrating captive bolt appeared to be humane and effective techniques for inducing death in American alligators, whereas spinal cord severance alone was not found to be an appropriate method.
Abstract
Objective—To evaluate with CT the efficacy of various combinations of firearms and ammunitions to penetrate and disrupt the brain tissue of cadaveric heads of feedlot steers.
Sample—42 fresh cadaveric heads of 12- to 18-month-old Bos taurus steers.
Procedures—For each of 7 combinations of firearms and ammunitions (.22-caliber rifle firing a long rifle 30-grain plated lead solid- or hollow-point round, .223-caliber carbine firing a 50-grain ballistic-tip round, 9-mm pistol firing a 124-grain total metal jacket round, .45-caliber automatic Colt pistol [ACP] firing a 230-grain full metal jacket round, and 12-gauge shotgun firing a 2.75-inch 1.25-ounce No. 4 birdshot shell or a 1-ounce rifled slug), 6 cadaveric heads were shot at an identical distance (3 m), angle, and anatomic location. Heads were scanned with third-generation CT, and images were evaluated to determine extent of penetration, projectile fragmentation, cranial fracture, and likelihood of instantaneous death (≥ 30% destruction of brain tissue or a brainstem lesion).
Results—41 of 42 skulls were penetrated by the projectile. Instantaneous death was considered a likely consequence for 83% (25/30) of heads shot with a rifle-fired .22-caliber solid-point round, pistol-fired .45-caliber ACP round, carbine-fired .223-caliber round, and shotgun-fired birdshot and slug. Of the 18 heads shot with pistol-fired 9-mm and .45-caliber ACP rounds and rifle-fired .22-caliber hollow-point rounds, only 6 had brainstem lesions.
Conclusions and Clinical Relevance—Results suggested that gunshots delivered by all firearm-ammunition combinations except rifle-fired .22-caliber hollow-point rounds and pistol-fired 9-mm rounds were viable options for euthanasia of feedlot cattle.
Abstract
Objective—To test the hypothesis that application of a rope restraint device would result in behavioral, electroencephalographic, and humoral changes consistent with sleep and analgesia in neonatal foals.
Animals—8 healthy neonatal foals.
Procedures—Following acclimatization to experimental conditions, each foal underwent a series of assessments before and during or at the end of a period of restraint via application of a restraint device (soft linen rope). Assessments included measurements of heart and respiratory rates, rectal temperature, and circulating β-endorphin and steroid hormone concentrations and evaluations of mentation and body position (behavior), electroencephalographic patterns, and pain tolerance.
Results—All foals were lively with apparently normal behavior prior to restraint. During application of the restraint device, foals assumed lateral recumbency with relaxed, somnolent behavior. Heart and respiratory rates and rectal temperature uniformly decreased as a result of the procedure. Electroencephalographic recordings (completed for 3 foals only) revealed patterns consistent with slow wave sleep. Plasma ACTH, dehydroepiandrosterone sulfate, and androstenedione concentrations significantly increased during restraint, compared with prerestraint values. The foals' tolerance to noxious stimuli significantly increased during restraint; however, this was independent of the concentration of circulating β-endorphin.
Conclusions and Clinical Relevance—In neonatal foals, the evaluated form of restraint resulted in a decrease in heart and respiratory rates and rectal temperature. Squeeze-induced somnolence may resemble the effects of compression of the fetus in the birth canal and lead to inhibition of voluntary activity. Use of this technique to safely restrain neonatal foals during minor procedures warrants further evaluation.
Abstract
Objective—To determine the effects of meloxicam on values of hematologic and plasma biochemical analysis variables and results of histologic examination of tissue specimens of Japanese quail (Coturnix japonica).
Animals—30 adult Japanese quail.
Procedures—15 quail underwent laparoscopic examination of the left kidneys, and 15 quail underwent laparoscopic examination and biopsy of the left kidneys. Quail in each of these groups received meloxicam (2.0 mg/kg, IM, q 12 h; n = 10) or a saline (0.9% NaCl) solution (0.05 mL, IM, q 12 h; control birds; 5) for 14 days. A CBC and plasma biochemical analyses were performed at the start of the study and within 3 hours after the last treatment. Birds were euthanized and necropsies were performed.
Results—No adverse effects of treatments were observed, and no significant changes in values of hematologic variables were detected during the study. Plasma uric acid concentrations and creatine kinase or aspartate aminotransferase activities were significantly different before versus after treatment for some groups of birds. Gross lesions identified during necropsy included lesions at renal biopsy sites and adjacent air sacs (attributed to the biopsy procedure) and pectoral muscle hemorrhage and discoloration (at sites of injection). Substantial histopathologic lesions were limited to pectoral muscle necrosis, and severity was greater for meloxicam-treated versus control birds.
Conclusions and Clinical Relevance—Meloxicam (2.0 mg/kg, IM, q 12 h for 14 days) did not cause substantial alterations in function of or histopathologic findings for the kidneys of Japanese quail but did induce muscle necrosis; repeated IM administration of meloxicam to quail may be contraindicated.