Browse
Abstract
OBJECTIVE
To compare measurements of crude fiber (CF) and total dietary fiber (TDF) for various dog foods and their effect on the calculated nitrogen-free extract and metabolizable energy (ME) content, and to compare label-guaranteed and laboratory-analyzed macronutrient values.
SAMPLE
51 dog foods fed to client-owned dogs with osteoarthritis.
PROCEDURES
Foods were analyzed for dry matter, ash, crude protein, acid-hydrolyzed fat, CF, and TDF. Metabolizable energy was calculated by use of a formula with modified Atwater factors and formulas recommended by the National Research Council that included both CF and TDF values. Linear regression analysis was performed to determine the correlation between CF and TDF values.
RESULTS
Only a few foods failed to conform to the guaranteed analysis for all macronutrients except for CF, in which approximately 40% of the foods exceeded the guaranteed maximum values. The CF and TDF values were moderately correlated (r = 0.843). Correlations among CF- and TDF-based ME estimations were moderate with use of the modified Atwater formula and strong with use of the National Research Council formulas (r = 0.86 and r = 0.91, respectively).
CONCLUSIONS AND CLINICAL RELEVANCE
Values for CF were the most variable of the macronutrients of the evaluated dog foods and results suggested that CF is an incomplete and inaccurate measurement of dietary fiber content and, thus, its inaccuracy may lead to inaccurate and variable ME values.
Abstract
OBJECTIVE
To determine the effects of IV administration of pimobendan on hemodynamic indices and indices of left atrial (LA) longitudinal strain by speckle-tracking echocardiography in healthy dogs.
ANIMALS
6 healthy Beagles.
PROCEDURES
After the dogs were anesthetized, the right heart was catheterized and 2-D conventional and speckle-tracking echocardiography were performed before and after IV administration of 0.15 mg of pimobendan/kg. Speckle-tracking echocardiography was performed to assess the 3 LA phasic functions through LA deformation (longitudinal strain and strain rate) and volumetric analyses.
RESULTS
Pimobendan significantly increased stroke volume and cardiac output and decreased systemic vascular resistance. Pimobendan significantly improved left ventricular function assessed by the Tei index and LA booster pump function assessed by LA longitudinal strain and change in fractional volume during atrial systole. Indices of LA reservoir and conduit function were unchanged.
CONCLUSIONS AND CLINICAL RELEVANCE
In healthy dogs, IV administration of pimobendan improved the indices of LA booster pump function but had no effect on the indices of LA reservoir and conduit functions. Further studies are needed to validate whether these results can be extrapolated to dogs with myxomatous mitral valve disease.
Abstract
OBJECTIVE
To describe methods to measure the 3-D orientation of the proximal, diaphyseal, and distal segments of the canine radius by use of computer-aided design software (CADS) and to compare the repeatability and reliability of measurements derived by those methods.
SAMPLE
31 canine radii with biapical deformities and 24 clinically normal (control) canine radii.
PROCEDURES
Select CT scans of radii were imported into a CADS program. Cartesian coordinate systems for the humerus and proximal, diaphyseal, and distal radial segments were developed. The orientation of each radial segment in the frontal, sagittal, and transverse planes was measured in triplicate by 3 methods. The repeatability and reliability of those measurements were calculated and compared among the 3 measurement methods.
RESULTS
The mean ± SD within-subject repeatability of radial angular measurements for all 3 methods was 1.40 ± 0.67° in the frontal plane, 3.17 ± 2.21° in the sagittal plane, and 3.01 ± 1.11° in the transverse plane for control radii and 2.56 ± 1.95° in the frontal plane, 3.59 ± 2.39° in the sagittal plane, and 3.47 ± 1.19° in the transverse plane for abnormal radii. Mean ± SD bias between radial measurement methods was 1.88 ± 2.07° in the frontal plane, 6.44 ± 6.80° in the sagittal plane, and 2.27 ± 2.81° in the transverse plane.
CONCLUSIONS AND CLINICAL RELEVANCE
Results indicated that use of CADS to assess the 3-D orientation of the proximal, diaphyseal, and distal segments of normal and abnormal canine radii yielded highly repeatable and reliable measurements.
Abstract
OBJECTIVE
To validate the use of a flow cytometric assay that uses 2‘,7‘-dichlorodihydrofluorescein diacetate (DCFH-DA) to measure reactive oxygen species in the erythrocytes of healthy dogs.
ANIMALS
50 healthy adult dogs.
PROCEDURES
Erythrocytes were incubated with DCFH-DA or a vehicle control (dimethyl sulfoxide), then incubated with (stimulated) or without (unstimulated) hydrogen peroxide. The flow cytometric assay was evaluated for specificity with increasing concentrations of DCFH-DA and hydrogen peroxide, and a polynomial regression line was applied to determine optimal concentrations. For precision, samples were analyzed 5 consecutive times for determination of intra- and interassay variability. Stability of samples stored at 4°C for up to 48 hours after blood collection was determined with flow cytometric analysis. Coefficient of variation (CV) was considered acceptable at 20%. Baseline measurements were used to determine an expected range of median fluorescence intensity for unstimulated erythrocytes incubated with DCFH-DA.
RESULTS
Erythrocytes were successfully isolated, and stimulated samples demonstrated higher median fluorescence intensity, compared with unstimulated samples. The intra-assay CV was 11.9% and 8.9% and interassay CV was 11.9% and 9.1% for unstimulated and stimulated samples, respectively. Unstimulated samples were stable for up to 24 hours, whereas stimulated samples were stable for up to 48 hours.
CONCLUSIONS AND CLINICAL RELEVANCE
Flow cytometry for the measurement of reactive oxygen species in the erythrocytes of healthy dogs by use of DCFH-DA had acceptable specificity, precision, and stability. Flow cytometry is a promising technique for evaluating intraerythrocytic oxidative stress for healthy dogs.
Abstract
OBJECTIVE
To compare results of a commercially available device for oscillometrically measured blood pressure (OBP) with invasively measured blood pressure (IBP) in awake and anesthetized dogs.
ANIMALS
19 adult dogs (mean ± SD body weight, 17.8 ± 7.5 kg).
PROCEDURES
Blood pressures were measured in dogs while they were awake and anesthetized with isoflurane. The OBP was recorded on a thoracic limb, and IBP was simultaneously recorded from the median caudal artery. Agreement between OBP and IBP was evaluated with the Bland-Altman method. Guidelines of the American College of Veterinary Internal Medicine (ACVIM) were used for validation of the oscillometric device.
RESULTS
In awake dogs, mean bias of the oscillometric device was −11.12 mm Hg (95% limits of agreement [LOA], −61.14 to 38.90 mm Hg) for systolic arterial blood pressure (SAP), 9.39 mm Hg (LOA, −28.26 to 47.04 mm Hg) for diastolic arterial blood pressure (DAP), and −0.85 mm Hg (LOA, −40.54 to 38.84 mm Hg) for mean arterial blood pressure (MAP). In anesthetized dogs, mean bias was −12.27 mm Hg (LOA, −47.36 to 22.82 mm Hg) for SAP, −3.92 mm Hg (LOA, −25.28 to 17.44 mm Hg) for DAP, and −7.89 mm Hg (LOA, −32.31 to 16.53 mm Hg) for MAP. The oscillometric device did not fulfill ACVIM guidelines for the validation of such devices.
CONCLUSIONS AND CLINICAL RELEVANCE
Agreement between OBP and IBP results for awake and anesthetized dogs was poor. The oscillometric blood pressure device did not fulfill ACVIM guidelines for validation. Therefore, clinical use of this device cannot be recommended.
Abstract
OBJECTIVE
To determine the correlation between glucose concentrations in serum, plasma, and blood measured by a point-of-care glucometer (POCG) and serum glucose concentration measured by an automated biochemical analyzer (ABA; gold standard).
SAMPLE
152 canine and 111 feline blood samples.
PROCEDURES
For each sample, the glucose concentration in serum, plasma, and blood was measured by a POCG and compared with the ABA-measured glucose concentration by means of the Lin concordance correlation coefficient. Results were summarized by species for all samples and subsets of samples with hyperglycemia (ABA-measured glucose concentration > 112 mg/dL for dogs and > 168 mg/dL for cats) and pronounced hyperglycemia (ABA-measured glucose concentration > 250 mg/dL for both species). The effect of PCV on correlations between POCG and ABA measurements was also assessed.
RESULTS
Hyperglycemia and pronounced hyperglycemia were identified in 69 and 36 canine samples and 44 and 29 feline samples, respectively. The POCG-measured glucose concentrations in serum, plasma, and blood were strongly and positively correlated with the gold standard concentration. The PCV was positively associated with the correlation between the POCG-measured blood glucose concentration and the gold standard concentration but was not associated with the correlations between the POCG-measured glucose concentrations in serum and plasma and the gold standard concentration.
CONCLUSIONS AND CLINICAL RELEVANCE
Results indicated that POCG-measured glucose concentrations in serum, plasma, and blood were strongly correlated with the ABA-measured serum glucose concentration, even in hyperglycemic samples. Given the time and labor required to harvest serum or plasma from blood samples, we concluded that blood was the preferred sample type for use with this POCG.
Abstract
OBJECTIVE
To compare glucose concentrations in peripheral venous and capillary blood samples collected from dogs before and after consumption of a meal and measured with a veterinary-specific portable blood glucose meter (PBGM).
ANIMALS
12 dogs (96 blood samples).
PROCEDURES
A veterinary-specific PBGM was used to measure blood glucose concentrations. Glucose concentrations in capillary blood samples obtained from the carpal pad, medial aspect of a pinna, and oral mucosa were compared with glucose concentrations in blood samples obtained from a lateral saphenous vein. Samples were collected after food was withheld for 12 hours and again 2 hours after consumption of a meal.
RESULTS
Location of capillary blood collection had a significant effect on glucose concentrations measured with the PBGM. Glucose concentration in capillary blood collected from the medial aspect of the pinna did not differ significantly from the glucose concentration in peripheral venous blood samples, whereas glucose concentrations in blood samples collected from the carpal pad and oral mucosa differed significantly from the glucose concentration in peripheral venous blood samples. There was no significant difference between preprandial and postprandial blood glucose concentrations.
CONCLUSIONS AND CLINICAL RELEVANCE
Glucose concentrations in capillary blood collected from the medial aspect of the pinna of dogs better reflected glucose concentrations in venous blood than concentrations measured in capillary blood collected from the carpal pad or oral mucosa.
Abstract
OBJECTIVE
To evaluate effects of the addition of glucose to dog and cat urine on urine specific gravity (USG) and determine whether glucosuria affects assessment of renal concentrating ability.
SAMPLE
Urine samples from 102 dogs and 59 cats.
PROCEDURES
Urine for each species was pooled to create samples with various USGs. Glucose was added to an aliquot of each USG pool (final concentration, 2,400 mg/dL), and serial dilutions of the glucose-containing aliquot were created for each pool. The USG then was measured in all samples. The difference in USG attributable to addition of glucose was calculated by subtracting the USG of the unaltered sample from the USG of the sample after the addition of glucose. The relationship between the difference in USG and the USG of the unaltered, undiluted sample was evaluated by the use of linear regression analysis.
RESULTS
Addition of glucose to urine samples increased the USG. There was a significant relationship between USG of the undiluted sample and the difference in USG when glucose was added to obtain concentrations of 300, 600, 1,200, and 2,400 mg/dL in canine urine and concentrations of 600, 1,200, and 2,400 mg/dL in feline urine. The more concentrated the urine before the addition of glucose, the less change there was in the USG. Changes in USG attributable to addition of glucose were not clinically important.
CONCLUSIONS AND CLINICAL RELEVANCE
Substantial glucosuria resulted in minimal alterations in specific gravity of canine and feline urine samples. Thus, USG can be used to assess renal concentrating ability even in samples with glucosuria.
Abstract
OBJECTIVE
To determine the amount of negative pressure generated by syringes of various sizes with and without an attached thoracostomy tube and whether composition of thoracostomy tubes altered the negative pressure generated.
SAMPLE
Syringes ranging from 1 to 60 mL and 4 thoracostomy tubes of various compositions (1 red rubber catheter, 1 polyvinyl tube, and 2 silicone tubes).
PROCEDURES
A syringe or syringe with attached thoracostomy tube was connected to a pneumatic transducer. Each syringe was used to aspirate a volume of air 10 times. Negative pressure generated was measured and compared among the various syringe sizes and various thoracostomy tubes.
RESULTS
The negative pressure generated decreased as size of the syringe increased for a fixed volume across syringes. Addition of a thoracostomy tube further decreased the amount of negative pressure. The red rubber catheter resulted in the least amount of negative pressure, followed by the polyvinyl tube and then the silicone tubes. There was no significant difference in negative pressure between the 2 silicone tubes. The smallest amount of negative pressure generated was −74 to −83 mm Hg.
CONCLUSIONS AND CLINICAL RELEVANCE
Limited data are available on the negative pressure generated during intermittent evacuation of the thoracic cavity. For the present study, use of a syringe of ≥ 20 mL and application of 1 mL of negative suction volume resulted in in vitro pressures much more negative than the currently recommended pressure of −14.71 mm Hg for continuous suction. Additional in vitro or cadaveric studies are needed.
Abstract
OBJECTIVE
To evaluate glomerular filtration rate (GFR) estimation by means of plasma clearance of iohexol (IOX) in domestic rabbits and to assess accuracy of limited-sampling models for GFR estimation.
ANIMALS
6 healthy domestic rabbits (Oryctolagus cuniculus).
PROCEDURES
Each rabbit received IOX (64.7 mg/kg [0.1 mL/kg], IV), and blood samples were collected at predetermined times before and after administration. Plasma IOX concentration was determined by high-performance liquid chromatography. The pharmacokinetics of IOX was determined by a noncompartmental method. For each rabbit, plasma clearance of IOX was determined by dividing the total IOX dose administered by the area under the concentration-time curve indexed to the subject's body weight. The GFR estimated from the plasma IOX concentration at 6 sampling times (referent model) was compared with that estimated from the plasma IOX concentration at 5 (model A), 4 (model B), and 3 (models C, D, and E) sampling times (limited-sampling models).
RESULTS
Mean ± SD GFR was 4.41 ± 1.10 mL/min/kg for the referent model and did not differ significantly from the GFR estimated by any of the limited-sampling models. The GFR bias magnitude relative to the referent model was smallest for model D in which GFR was estimated from plasma IOX concentrations at 5, 15, and 90 minutes after IOX administration.
CONCLUSIONS AND CLINICAL RELEVANCE
Results suggested that plasma clearance of IOX was a safe, reliable, accurate, and clinically feasible method to estimate GFR in domestic rabbits. Further research is necessary to refine the method.