• 1.

    Porter EG, Werpy NM. New concepts in standing advanced diagnostic equine imaging. Vet Clin North Am Equine Prasct. 2014;30(1):239268. doi:10.1016/j.cveq.2013.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Desbrosse FG, Vandeweerd JMEF, Perrin RAR, et al. A technique for computed tomography (CT) of the foot in the standing horse. Equine Vet Educ. 2008;20(2):9398. doi:10.2746/095777308X272085

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Koch C, Pauwels F, Schweizer-Gorgas D. Technical set-up and case illustrations of orthopaedic cone beam computed tomography in the standing horse. Equine Vet Educ. 2021;33(5):255262. doi:10.1111/eve.13290

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Pauwels FE, van der Vekens E, Christan Y, Koch C, Schweizer D. Feasibility, indications, and radiographically confirmed diagnoses of standing extremity cone beam computed tomography in the horse. Vet Surg. 2021;50(2):365374. doi:10.1111/vsu.13560

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Powell SE. Standing computed tomography (CT) of the equine head. Abstract in: Proceedings of the American Association of Equine Practitioners Forum. American Association of Equine Practitioners; 2011;57:6768.

    • Search Google Scholar
    • Export Citation
  • 6.

    Dakin SG, Lam R, Rees E, Mumby C, West C, Weller R. Technical set-up and radiation exposure for standing computed tomography of the equine head. Equine Vet Educ. 2014;26(4):208215. doi:10.1111/eve.12127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Solano M, Brawer RS. CT of the equine head: technical considerations, anatomical guide and selected diseases. Clin Tech Equine Pract. 2004;3(4):374388. doi:10.1053/j.ctep.2005.02.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Dixon J, Müksch G, Witte TH, Perkins JD, Weller R. Standing equine computed tomography: technique and clinical use. Abstract in: Yearbook of European Association of Veterinary Diagnostic Imaging Forum. European Association of Veterinary Diagnostic Imaging; 2016:3150.

    • Search Google Scholar
    • Export Citation
  • 9.

    Pease A, Mair T, Spriet M. Imaging the equine head and spine. Equine Vet J. 2017;49(1):1314. doi:10.1111/evj.12640

  • 10.

    Davies T, Skelly C, Puggioni A, D’Helft C, Connolly S, Hoey S. Standing CT of the equine head: reducing radiation dose maintains image quality. Vet Radiol Ultrasound. 2020;61(2):137146. doi:10.1111/vru.12823

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bregger MD, Koch C, Zimmerman R, Sangiorgio D, Schweizer-Gorgas D. Cone-beam computed tomography of the head in standing equids. BMC Vet Res. 2019;15(1):289. doi:10.1186/s12917-019-2045-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wulster KB. Diagnosis of skeletal injury in the sport horse. Vet Clin North Am Equine Pract. 2018;34(2):193213. doi:10.1016/j.cveq.2018.04.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mageed M. Standing computed tomography off the equine limb using a multi-slice helical scanner: technique and feasibility study. Equine Vet Educ. 2022;34(2):7783. doi:10.1111/eve.13388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Curtiss AL, Ortved KF, Dallap-Schaer B, et al. Validation of standing cone beam computed tomography for diagnosing subchondral fetlock pathology in the Thoroughbred racehorse. Equine Vet J. 2021;53(3):510523. doi:10.1111/evj.13414

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Stewart HL, Siewerdsen JH, Nelson BB, Kawcak CE. Use of cone-beam computed tomography for advanced imaging of the equine patient. Equine Vet J. 2021;53(5):872885. doi:10.1111/evj.13473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Lechuga L, Weidlich GA. Cone beam CT vs. fan beam CT: a comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus. 2016;8(9):e778. doi:10.7759/cureus.778

    • Search Google Scholar
    • Export Citation
  • 17.

    Brounts SH, Henry T, Lund JR, Whitton RC, Ergun D, Muir P. Use of a novel helical fan beam imaging system for computed tomography of the head and neck in sedated standing horses: 120 cases. J Am Vet Med Assoc. 2022;260(X):XXX. doi:10.2460/javma.21.10.0471

    • Search Google Scholar
    • Export Citation
  • 18.

    Ngan DCS, Kharbanda OP, Geenty JP, Darendeliler MA. Comparison of radiation levels from computed tomography and conventional dental radiographs. Aust Orthod J. 2003;19(2):6775.

    • Search Google Scholar
    • Export Citation
  • 19.

    Signorelli L, Patcas R, Peltomäki T, Schätzle M. Radiation dose of cone-beam computed tomography compared to conventional radiographs in orthodontics. J Orofac Orthop. 2016;77(1):915. doi:10.1007/s00056-015-0002-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Baxter GM, Stashak TS. History, visual exam and conformation. In: Baxter G, ed. Adams and Stashak’s Lameness in Horses. 7th ed. J Wiley & Sons Inc; 2020:6793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Vallance SA, Bell RJW, Spriet M, Kass PH, Puchalski SM. Comparisons of computed tomography, contrast enhanced computed tomography and standing low-field magnetic resonance imaging in horses with lameness localized to the foot. Part 1: anatomic visualization scores. Equine Vet J. 2012;44(1):5156. doi:10.1111/j.2042-3306.2011.00372.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Vallance SA, Bell RJW, Spriet M, Kass PH, Puchalski SM. Comparisons of computed tomography, contrast enhanced computed tomography and standing low-field magnetic resonance imaging in horses with lameness localized to the foot. Part 2: lesion identification. Equine Vet J. 2012;44(2):149156. doi:10.1111/j.2042-3306.2011.00386.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Groth AM, May SA, Weaver MP, Weller R. Intra-and interobserved agreement in the interpretation of navicular bones on radiographs and computed tomography scans. Equine Vet J. 2009;41(2):124129. doi:10.2746/042516408x345125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Zaha C, Schuszler L, Bumb D, Dascălu R, Sicoe B, Igna C. Comparative imaging study of the changes appeared in navicular syndrome in horses. Rev Rom Med Vet. 2020;30(4):7478.

    • Search Google Scholar
    • Export Citation
  • 25.

    Whitton RC, Buckley C, Donovan T, Wales AD, Dennis R. The diagnosis of lameness associated with distal limb pathology in a horse: a comparison of radiography, computed tomography, and magnetic resonance imaging. Vet J. 1998;155(3):223229. doi:10.1016/s1090-0233(05)80014-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Morgan JW, Santschi EM, Zekas LJ, et al. Comparison of radiography and computed tomography to evaluate metacarpo/metatarsophalangeal joint pathology of paired limbs of Thoroughbred racehorses with severe condylar fracture. Vet Surg. 2006;35(7):611617. doi:10.1111/j.1532-950X.2006.00198.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    O’Brien T, Baker TA, Brounts SH, et al. Detection of articular pathology of the distal aspect of the third metacarpal bone in Thoroughbred racehorses: comparison of radiography, computed tomography, and magnetic resonance imaging. Vet Surg. 2011;40(8):942951. doi:10.1111/j.1532-950X.2011.00881.x

    • Search Google Scholar
    • Export Citation
  • 28.

    Crijns CP, Martens A, Bergman HJ, et al. Intramodality and intermodality agreement in radiography and computed tomography of equine distal limb fractures. Equine Vet J. 2014;46(1):9296. doi:10.1111/evj.12082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Powell SE. Low-field standing magnetic resonance imaging findings of the metacarpo/metatarsophalangeal joint of racing Thoroughbreds with lameness localised to the region: a retrospective study of 131 horses. Equine Vet J. 2012;44(2):169177. doi:10.1111/j.2042-3306.2011.00389.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Murray RC, Mair TS, Sherlock CE, Blunden AS. Comparison of high-field and low-field magnetic resonance images of cadaver limbs of horses. Vet Rec. 2009;165(10):281288. doi:10.1136/vr.165.10.281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Murray RC, Schramme MC, Dyson SJ, Branch MV, Blunden TS. Magnetic resonance imaging characteristics of the foot in horses with palmar foot pain and control horses. Vet Radiol Ultrasound. 2006;47(1):116. doi:10.1111/j.1740-8261.2005.00100.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Nagy A, Dyson S. Magnetic resonance anatomy of the proximal metacarpal region of the horse described from images acquired from low- and high-field magnets. Vet Radiol Ultrasound. 2009;50(6):595605. doi:10.1111/j.1740-8261.2009.01589.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Al-Khudairi N, Welck MJ, Brandao B, Saifuddin A. The relationship of MRI findings and clinical features in symptomatic and asymptomatic os naviculare. Clin Radiol. 2019;74(1):80.e1–80.e6. doi:10.1016/j.crad.2018.09.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Gutierrez-Nibeyro SD, Werpy NM, Gold SJ, Olguin S, Schaeffer DJ. Standing MRI lesions of the distal interphalangeal joint and podotrochlear apparatus occur with a high frequency in Warmblood horses. Vet Radiol Ultrasound. 2020;61(3):336345. doi:10.1111/vru.12855

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Bladon B. MRI and navicular disease–on the brink of success or another false dawn? Vet Rec. 2013;173(3):6869. doi:10.1136/vr.f4659

  • 36.

    Suarez Sanchez-Andrade J, Richter H, Kuhn K, Bischofberger AS, Kircher PR, Hoey S. Comparison between magnetic resonance imaging, computed tomography, and arthrography to identify artificially induced cartilage defects of the equine carpal joints. Vet Radiol Ultrasound. 2018;59(3):312325. doi:10.1111/vru.12598

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Jones ARE, Ragle CA, Mattoon JS, Sanz MG. Use of non-contrast-enhanced computed tomography to identify deep digital flexor tendinopathy in horses with lameness: 28 cases (2014–2016). J Am Vet Med Assoc. 2019;254(7):852858. doi:10.2460/javma.254.7.852

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Hunter DG, Huber MJ, Nemanic S. The use of computed tomography to diagnose bilateral forelimb tendon pathology in a horse with unilateral lameness. Equine Vet Educ. 2016;28:439443. doi:10.1111/eve.12166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Puchalski SM, Galuppo LD, Hornof WJ, Wisner ER. Intraarterial contrast-enhanced computed tomography of the equine distal extremity. Vet Radiol Ultrasound. 2007;48(1):2129. doi:10.1111/j.1740-8261.2007.00198.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Gutierrez-Nibeyro SD, Werpy NM, White NA II. Standing low-field magnetic resonance imaging in horses with chronic foot pain. Aust Vet J. 2012;90(3):7583. doi:10.1111/j.1751-0813.2011.00875.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Colgate VA, FRAT Group, Marr CM. Science-in-brief: risk assessment for reducing injuries of the fetlock bones in Thoroughbred racehorses. Equine Vet J. 2020;52(4):482488. doi:10.1111/evj.13273

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Nelson BB, Goodrich LR, Barrett MF, Grinstaff MW, Kawcak CE. Use of contrast media in computed tomography and magnetic resonance imaging in horses: techniques, adverse events, and opportunities. Equine Vet J. 2017;49(4):410424. doi:10.1111/evj.12689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    van Hamel SE, Bergman HJ, Puchalski SM, de Groot MW, van Weeren PR. Contrast-enhanced computed tomographic evaluation of the deep digital flexor tendon in the equine foot compared to macroscopic and histological findings in 23 limbs. Equine Vet J. 2014;46(3):300305. doi:10.1111/evj.12129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Puchalski SM, Galuppo LD, Drew CP, Wisner ER. Use of contrast-enhanced computed tomography to assess angiogenesis in deep digital flexor tendinopathy in a horse. Vet Radiol Ultrasound. 2009;50(3):292297. doi:10.1111/j.1740-8261.2009.01536.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Ogden NKE, Milner PI, Stack JD, Talbot AM. CT more accurately detects foreign bodies within the equine foot than MRI or digital radiography. Vet Radiol Ultrasound. 2021;62(2):225235. doi:10.1111/vru.12944

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Claerhoudt S, Bergman EH, Saunders JH. Computed tomographic anatomy of the equine foot. Anat Histol Embryol. 2014;43(5):395402. doi:10.1111/ahe.12091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Riggs CM. Computed tomography in equine orthopaedics – the next great leap? Equine Vet Educ. 2019;31(3):151153. doi:10.1111/eve.12885

  • 48.

    Spriet M, Espinosa P, Kyme AZ, et al. 18F-sodium fluoride positron emission tomography of the equine distal limb: exploratory study in three horses. Equine Vet J. 2018;50(1):125132. doi:10.1111/evj.12719

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Spriet M, Esponisa-Mur P, Cissell DD, et al. 18F-sodium fluoride positron emission tomography of the racing Thoroughbred fetlock: validation and comparison with other imaging modalities in nine horses. Equine Vet J. 2019;51(3):375383. doi:10.1111/evj.13019

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Use of a novel helical fan beam imaging system for computed tomography of the distal limb in sedated standing horses: 167 cases (2019–2020)

Sabrina H. Brounts DVM, PhD, DACVS, DACVSMR1, Jane R. Lund DVM, MS, DACVR1, R. Chris Whitton BVSc, PhD2, David L. Ergun PhD3,4, and Peter Muir DVM, PhD, DACVS1
View More View Less
  • 1 Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
  • | 2 Department of Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Australia
  • | 3 Department of Medical Physics, University of Wisconsin, Madison, WI
  • | 4 Asto CT Inc, Middleton, WI

Abstract

OBJECTIVE

To evaluate the diagnostic capabilities of a novel helical fan beam CT system used for imaging of horses with a range of clinical distal limb problems.

ANIMALS

167 horses.

PROCEDURES

Medical records were reviewed of horses presented for CT of the distal limb at 2 university-based veterinary hospitals. The following data were recorded: age, sex, breed, presenting complaint, sedation used for imaging, scanning time, procedure time, other diagnostic imaging methods performed, imaging diagnosis, clinical diagnosis, and complications during imaging.

RESULTS

Most horses were Thoroughbreds and Quarter Horses. Procedure times ranged from 15 to 40 minutes, with scanning completed in 15 to 45 seconds for each region of interest. The foot or pastern region was commonly scanned (88/167 [53%] horses), with navicular bone disease diagnosed in 42 of 88 (48%) horses. The fetlock region was also commonly scanned (42/167 [40%] horses), with palmar or plantar osteochondral disease diagnosed in 17 of 42 (40%) horses. Horses were compliant during scanning, and no complications with sedation or damage to the scanner occurred. A specific imaging diagnosis for the lameness was achieved more frequently with CT imaging (166/167 [99%]) than with planar digital radiography (26/58 [45%]).

CLINICAL RELEVANCE

The helical fan beam CT system could be used safely to scan sedated standing horses from the carpal or tarsal region distally. Subjectively, the machine was easy to operate, allowing CT to be incorporated into lameness investigations. CT imaging was very likely to result in a clinical diagnosis in horses with distal limb lameness.

Supplementary Materials

    • Supplementary Figure S1 (PDF 107 KB)
    • Supplementary Figure S2 (PDF 115 KB)
    • Supplementary Figure S3 (PDF 111 KB)

Contributor Notes

Corresponding author: Dr. Brounts (sabrina.brounts@wisc.edu)