Antimicrobial agents in small animal dermatology for treating staphylococcal infections

Mark G. PapichClinical Pharmacology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC

Search for other papers by Mark G. Papich in
Current site
Google Scholar
PubMed
Close
 DVM, MS, DACVCP
View More View Less

Abstract

Antibiotic recommendations for treating skin infections have been published many times in the past 30 years. Prior to 2000, the recommendations focused on the use of β-lactam antibiotics, such as cephalosporins, amoxicillin-clavulanate, or β-lactamase stable penicillins. These agents are still recommended, and used, for wild-type methicillin-susceptible strains of Staphylococcus spp. However, since the mid-2000s there has been an increase in methicillin-resistant Staphylococcus spp (MRSP). The increase among S pseudintermedius in animals coincided with the increase in methicillin-resistant S aureus that was observed in people near the same time. This increase led veterinarians to reevaluate their approach to treating skin infections, particularly in dogs. Prior antibiotic exposure and hospitalization are identified as risk factors for MRSP. Topical treatments are more often used to treat these infections. Culture and susceptibility testing is performed more often, especially in refractory cases, to identify MRSP. If resistant strains are identified, veterinarians may have to rely on antibiotics that were previously used uncommonly for skin infections, such as chloramphenicol, aminoglycosides, tetracyclines, and human-label antibiotics such as rifampin and linezolid. These drugs carry risks and uncertainties that must be considered before they are routinely prescribed. This article will discuss these concerns and provide veterinarians guidance on the treatment of these skin infections.

Abstract

Antibiotic recommendations for treating skin infections have been published many times in the past 30 years. Prior to 2000, the recommendations focused on the use of β-lactam antibiotics, such as cephalosporins, amoxicillin-clavulanate, or β-lactamase stable penicillins. These agents are still recommended, and used, for wild-type methicillin-susceptible strains of Staphylococcus spp. However, since the mid-2000s there has been an increase in methicillin-resistant Staphylococcus spp (MRSP). The increase among S pseudintermedius in animals coincided with the increase in methicillin-resistant S aureus that was observed in people near the same time. This increase led veterinarians to reevaluate their approach to treating skin infections, particularly in dogs. Prior antibiotic exposure and hospitalization are identified as risk factors for MRSP. Topical treatments are more often used to treat these infections. Culture and susceptibility testing is performed more often, especially in refractory cases, to identify MRSP. If resistant strains are identified, veterinarians may have to rely on antibiotics that were previously used uncommonly for skin infections, such as chloramphenicol, aminoglycosides, tetracyclines, and human-label antibiotics such as rifampin and linezolid. These drugs carry risks and uncertainties that must be considered before they are routinely prescribed. This article will discuss these concerns and provide veterinarians guidance on the treatment of these skin infections.

Contributor Notes

Corresponding author: Dr. Papich (mgpapich@ncsu.edu)
  • 1.

    Papich MG. Selection of antibiotics for meticillin-resistant Staphylococcus pseudintermedius: time to revisit some old drugs? Vet Dermatol. 2012;23(4):352360. doi:10.1111/j.1365-3164.2011.01030.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Beco L, Guaguere E, Méndez CL, Noli C, Nuttall T, Vroom M. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part 2—antimicrobial choice, treatment regimens and compliance. Vet Record. 2013;172(6):156. doi:10.1136/vr.101070

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Papich MG, Lindeman C. Cephalexin susceptibility breakpoint for veterinary isolates: Clinical Laboratory Standards Institute revision. J Vet Diagn Invest. 2018;30(1):113120. doi:10.1177/1040638717742434

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Papich MG, Davis JL, Floerchinger AM. Cefpodoxime and cephalexin plasma pharmacokinetics, protein binding, and tissue distribution after oral administration to dogs. Am J Vet Res. 2010;71(12):14841491. doi:10.2460/ajvr.71.12.1484

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Batzias GC, Delis GA, Athanasiou LV. Clindamycin bioavailability and pharmacokinetics following oral administration of clindamycin hydrochloride capsules in dogs. Vet J. 2005;170(3):339345. doi:10.1016/j.tvjl.2004.06.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hnot ML, Cole LK, Lorch G, Papich MG, Rajala-Schultz PJ, Daniels JB. Evaluation of canine-specific minocycline and doxycycline susceptibility breakpoints for meticillin-resistant Staphylococcus pseudintermedius isolates from dogs. Vet Dermatol. 2015;26(5):334-e71. doi:10.1111/vde.12227

    • Search Google Scholar
    • Export Citation
  • 7.

    Maaland MG, Guardabassi L, Papich MG. Minocycline pharmacokinetics and pharmacodynamics in dogs: dosage recommendations for treatment of methicillin-resistant Staphylococcus pseudintermedius infections. Vet Dermatol. 2014;25(3):182-e47. doi:10.1111/vde.12130

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Maaland MG, Papich MG, Turnidge J, Guardabassi L. Pharmacodynamics of doxycycline and tetracycline against Staphylococcus pseudintermedius: proposal of canine-specific breakpoints for doxycycline. J Clin Microbiol. 2013;51(11):35473554. doi:10.1128/JCM.01498-13

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard—Sixth Edition. CLSI document VET01(S). Clinical and Laboratory Standards Institute; 2023.

  • 10.

    Bryan J, Frank LA, Rohrbach BW, Burgette LJ, Cain CL, Bemis DA. Treatment outcome of dogs with meticillin-resistant and meticillin-susceptible Staphylococcus pseudintermedius pyoderma. Vet Dermatol. 2012;23(4):361368. doi:10.1111/j.1365-3164.2012.01034.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Windahl U, Reimegård E, Ström Holst B, et al. Carriage of methicillin-resistant Staphylococcus pseudintermedius in dogs–a longitudinal study. BMC Vet Res. 2012;8:34. doi:10.1186/1746-6148-8-34

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ihrke PJ, Papich MG, Demanuelle TC. The use of fluoroquinolones in veterinary dermatology. Vet Dermatol. 1999;10(3):193204. doi:10.1046/j.1365-3164.1999.00179.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Dancer SJ. The effect of antibiotics on methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2008;61(2):246253. doi:10.1093/jac/dkm465

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Harbarth S, Samore MH. Interventions to control MRSA: high time for time-series analysis? J Antimicrob Chemother. 2008;62(3):431433. doi:10.1093/jac/dkn240

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Descloux S, Rossano A, Perreten V. Characterization of new staphylococcal cassette chromosome mec (SCC mec) and topoisomerase genes in fluoroquinolone-and methicillin-resistant Staphylococcus pseudintermedius. J Clin Microbiol. 2008;46(5):18181823. doi:10.1128/JCM.02255-07

    • Search Google Scholar
    • Export Citation
  • 16.

    McCarthy AJ, Harrison EM, Stanczak-Mrozek K, et al. Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius. J Antimicrob Chemother. 2014;70(4):9971007. doi:10.1093/jac/dku496

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Madsen M, Messenger K, Papich MG. Pharmacokinetics of levofloxacin following oral administration of a generic levofloxacin tablet and intravenous administration to dogs. Am J Vet Res. 2019;80(10):957962. doi:10.2460/ajvr.80.10.957

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Papich MG. Ciprofloxacin pharmacokinetics and oral absorption of generic ciprofloxacin tablets in dogs. Am J Vet Res. 2012;73(7):10851091. doi:10.2460/ajvr.73.7.1085

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Papich MG. Ciprofloxacin pharmacokinetics in clinical canine patients. J Vet Internal Med. 2017;31(5):15081513. doi:10.1111/jvim.14788

    • Search Google Scholar
    • Export Citation
  • 20.

    Clark CH. Chloramphenicol dosage. Modern Vet Pract. 1978;59(1):749754.

  • 21.

    Short J, Zabel S, Cook C, Schmeitzel L. Adverse events associated with chloramphenicol use in dogs: a retrospective study (2007–2013). Vet Rec. 2014;175(21):537. doi:10.1136/vr.102687

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Aidasani D, Zaya MJ, Malpas PB, Locuson CW. In vitro drug-drug interaction screens for canine veterinary medicines: evaluation of cytochrome P450 reversible inhibition. Drug Metab Dispos. 2008;36(8):15121518. doi:10.1124/dmd.108.021196

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kukanich B, Kukanich KS, Rodriguez JR. The effects of concurrent administration of cytochrome P-450 inhibitors on the pharmacokinetics of oral methadone in healthy dogs. Vet Anaesth Analg. 2011;38(3):224230. doi:10.1111/j.1467-2995.2011.00602.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Akesson CE, Linero PEM. Effect of chloramphenicol on serum salicylate concentrations in dogs and cats. Am J Vet Res. 1982;43:14711472.

  • 25.

    Sanders JE, Yeary RA, Fenner WR, Powers JD. Interaction of phenytoin with chloramphenicol or pentobarbital in the dog. J Am Vet Med Assoc. 1979;175(2):177180.

    • Search Google Scholar
    • Export Citation
  • 26.

    Adams HR, Dixit BN. Prolongation of pentobarbital anesthesia by chloramphenicol in dogs and cats. J Am Vet Med Assoc. 1970;156(7):902905.

  • 27.

    Gold RM, Cohen ND, Lawhon SD. Amikacin resistance in Staphylococcus pseudintermedius isolated from dogs. J Clin Microbiol. 2014;52(10):36413646. doi:10.1128/JCM.01253-14

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Drusano GL, Ambrose PG, Bhavnani SM, Bertino JS, Nafziger AN, Louie A. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis. 2007;45(6):753760. doi:10.1086/520991

    • Search Google Scholar
    • Export Citation
  • 29.

    Llanos-Paez CC, Hennig S, Staatz CE. Population pharmacokinetic modelling, Monte Carlo simulation and semi-mechanistic pharmacodynamic modelling as tools to personalize gentamicin therapy. J Antimicrob Chemother. 2017;72(3):639667. doi:10.1093/jac/dkw461

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tam VH, Kabbara S, Vo G, Schilling AN, Coyle EA. Comparative pharmacodynamics of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(8):26262631. doi:10.1128/AAC.01165-05

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Konig C, Simmen HP, Blaser J. Bacterial concentrations in pus and infected peritoneal fluid – implication of bactericidal activity of antibiotics. J Antimicrob Chemother. 1998;42(2):227232. doi:10.1093/jac/42.2.227

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Trepanier LA, Danhof R, Toll J, Watrous D. Clinical findings in 40 dogs with hypersensitivity associated with administration of potentiated sulfonamides. J Vet Intern Med. 2003;17(5):647652. doi:10.1111/j.1939-1676.2003.tb02495.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Trepanier LA. Idiosyncratic toxicity associated with potentiated sulfonamides in the dog. J Vet Pharmacol Ther. 2004;27(3):129138. doi:10.1111/j.1365-2885.2004.00576.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Frank LA, Hnilica KA, May ER, Sargent SJ, Davis JA. Effects of sulfamethoxazole-trimethoprim on thyroid function in dogs. Am J Vet Res. 2005;66(2):256259. doi:10.2460/ajvr.2005.66.256

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bemis DA, Jones RD, Frank LA, Kania SA. Evaluation of susceptibility test breakpoints used to predict mecA-mediated resistance in Staphylococcus pseudintermedius isolated from dogs. J Vet Diagn Invest. 2009;21(1):5358. doi:10.1177/104063870902100108

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bond R, Loeffler A. What’s happened to Staphylococcus intermedius? Taxonomic revision and emergence of multi-drug resistance. J Small Animal Pract. 2012;53(2):147154. doi:10.1111/j.1748-5827.2011.01165.x

    • Search Google Scholar
    • Export Citation
  • 37.

    Perreten V, Kadlec K, Schwarz S, et al. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother. 2010;65(6):11451154. doi:10.1093/jac/dkq078

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Weese JS. Methicillin-resistant Staphylococcus aureus: an emerging pathogen in small animals. J Am Anim Hosp Assoc. 2005;41(3):150157. doi:10.5326/0410150

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Weese JS, van Duijkeren E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet Microbiol. 2010;140(3–4):418429. doi:10.1016/j.vetmic.2009.01.039

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    van Duijkeren E, Catry B, Greko C, et al. Review on methicillin-resistant Staphylococcus pseudintermedius. J Antimicrob Chemother. 2011;66(12):27052714. doi:10.1093/jac/dkr367

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Gortel K, Campbell KL, Kakoma I, Whittem T, Schaeffer DJ, Weisiger RM. Methicillin resistance among staphylococci isolated from dogs. Am J Vet Res. 1999;60(12):15261530.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Deresinski S. Methicillin-resistant Staphylococcus aureus: an evolutionary, epidemiologic, and therapeutic odyssey. Clin Infect Dis. 2005;40(4):562573. doi:10.1086/427701

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Jones RD, Kania SA, Rohrbach BW, Frank LA, Bemis DA. Prevalence of oxacillin- and multidrug-resistant staphylococci in clinical samples from dogs: 1,772 samples (2001–2005). J Am Vet Med Assoc. 2007;230(2):221227. doi:10.2460/javma.230.2.221

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Weese JS, Faires MC, Frank LA, Reynolds LM, Battisti A. Factors associated with methicillin-resistant versus methicillin-susceptible Staphylococcus pseudintermedius infection in dogs. J Am Vet Med Assoc. 2012;240(12):14501455. doi:10.2460/javma.240.12.1450

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Zur G, Gurevich B, Elad D. Prior antimicrobial use as a risk factor for resistance in selected Staphylococcus pseudintermedius isolates from the skin and ears of dogs. Vet Dermatol. 2016;27(6):468-e125. doi:10.1111/vde.12382

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Huerta B, Maldonado A, Ginel PJ, et al. Risk factors associated with the antimicrobial resistance of staphylococci in canine pyoderma. Vet Microbiol. 2011;150(3–4):302308. doi:10.1016/j.vetmic.2011.02.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Nienhoff U, Kadlec K, Chaberny IF, et al. Methicillin-resistant Staphylococcus pseudintermedius among dogs admitted to a small animal hospital. VetMicrobiol. 2011;150(1–2):191197. doi:10.1016/j.vetmic.2010.12.018

    • Search Google Scholar
    • Export Citation
  • 48.

    Beck KM, Waisglass SE, Dick HL, Weese JS. Prevalence of meticillin-resistant Staphylococcus pseudintermedius (MRSP) from skin and carriage sites of dogs after treatment of their meticillin-resistant or meticillin-sensitive staphylococcal pyoderma. Vet Dermatol. 2012;23(4):369-e67. doi:10.1111/j.1365-3164.2012.01035.x

    • Search Google Scholar
    • Export Citation
  • 49.

    Kadlec K, van Duijkeren En Wagenaar JA, Schwarz S. Molecular basis of rifampicin resistance in methicillin-resistant Staphylococcus pseudintermedius isolates from dogs. J Antimicrob Chemother. 2011;66(6):12361242. doi:10.1093/jac/dkr118

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Sentürk S, Özel E, Sen A. Clinical efficacy of rifampicin for treatment of canine pyoderma. Acta Vet Brno. 2005;74(1):117122. doi:10.2754/avb200574010117

    • Search Google Scholar
    • Export Citation
  • 51.

    DeLucia M, Bardagi M, Caldin M, et al. Efficacy and adverse effects of rifampicin in canine pyoderma. Proceedings of the 7th World Congress of Veterinary Dermatology, Vancouver, Canada [abstract P-039]. Vet Dermatol. 2012;23(suppl 1):70.

    • Search Google Scholar
    • Export Citation
  • 52.

    Hillier A, Lloyd DH, Weese JS, et al. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet Dermatol. 2014;25(3):163. doi:10.1111/vde.12118

    • Search Google Scholar
    • Export Citation
  • 53.

    Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2011;52(3):285292. doi:10.1093/cid/cir034

    • Search Google Scholar
    • Export Citation
  • 54.

    Falagas ME, Bliziotis IA, Fragoulis KN. Oral rifampin for eradication of Staphylococcus aureus carriage from healthy and sick populations: a systematic review of the evidence from comparative trials. Am J Infect Control. 2007;35(2):106114. doi:10.1016/j.ajic.2006.09.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Forrest GN, Tamura K. Rifampin combination therapy for nonmycobacterial infections. Clin Microbiol Rev. 2010;23(1):1434. doi:10.1128/CMR.00034-09

  • 56.

    Reitman ML, Chu X, Cai S, et al. Rifampin’s acute inhibitory and chronic inductive drug interactions: experimental and model-based approaches to drug-drug interaction trial design. Clin Pharm Ther. 2011;89(2):234242. doi:10.1038/clpt.2010.271

    • Search Google Scholar
    • Export Citation
  • 57.

    Bajwa, J, Charach, M, Duclos, D. Adverse effects of rifampicin in dogs and serum alanine aminotransferase monitoring recommendations based on a retrospective study of 344 dogs. Vet Dermatol. 2013;24(6):570-e136. doi:10.1111/vde.12083

    • Search Google Scholar
    • Export Citation
  • 58.

    Rybak MJ, Lomaestro BM, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adults: summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2009;29(11):12751279. doi:10.1592/phco.29.11.1275

    • Search Google Scholar
    • Export Citation
  • 59.

    DeStefano IM, Wayne AS, Rozanski EA, Babyak JM. Parenterally administered vancomycin in 29 dogs and 7 cats (2003–2017). J Vet Int Med. 2019;33(1):200207. doi:10.1111/jvim.15357

    • Search Google Scholar
    • Export Citation
  • 60.

    Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother. 2022;77(10):25962621. doi:10.1093/jac/dkac263

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Bhamidipati RK, Dravid PV, Mullangi R, Srinivas NR. Prediction of clinical pharmacokinetic parameters of linezolid using animal data by allometric scaling: applicability for the development of novel oxazolidinones. Xenobiotica. 2004;36(6):571579.

    • Search Google Scholar
    • Export Citation
  • 62.

    Slatter JG, Adams LA, Bush EC, et al. Pharmacokinetics, toxicokinetics, distribution, metabolism and excretion of linezolid in mouse, rat and dog. Xenobiotica. 2002;32(10):907924. doi:10.1080/00498250210158249

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Wang J, Xia L, Wang R, Cai Y. Linezolid and its immunomodulatory effect: in vitro and in vivo evidence. Front Pharmacol. 2019;10:1389. doi:10.3389/fphar.2019.01389

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Papich MG. Antimicrobial agent use in small animals what are the prescribing practices, use of PK-PD principles, and extralabel use in the United States? J Vet Pharmacol Ther. 2021;44(2):238249. doi:10.1111/jvp.12921

    • PubMed
    • Search Google Scholar
    • Export Citation

Advertisement