Topical therapy for canine pyoderma: what is new?

Domenico SantoroDepartment of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL

Search for other papers by Domenico Santoro in
Current site
Google Scholar
PubMed
Close
 DVM, MS, DrSc, PhD, DACVD, DECVD, DACVM
View More View Less

Abstract

Antimicrobial-resistant cutaneous infections are increasing in veterinary medicine. The use of systemic antibiotics should be limited to severe cases of pyoderma to decrease the microbial pressure and selection for multidrug-resistant bacteria. Topical antimicrobials with a low-resistance profile, such as chlorhexidine, benzoyl peroxide, and ethyl lactate have been used for decades in veterinary dermatology. However, new alternatives have been explored in the past decade. The goal of this review is to summarize the current knowledge on the antibacterial efficacy and clinical use, when reported, of “classic” and new treatment options for topically treating canine pyoderma. This review is intended to fill the gap from previous systematic reviews published in veterinary dermatology a decade ago. The studies reported in this review emphasize the need and desire for alternatives to the classic topical antimicrobials used in veterinary medicine to significantly reduce the use of systemic antibiotics in the spirit of appropriate antimicrobial stewardship.

Abstract

Antimicrobial-resistant cutaneous infections are increasing in veterinary medicine. The use of systemic antibiotics should be limited to severe cases of pyoderma to decrease the microbial pressure and selection for multidrug-resistant bacteria. Topical antimicrobials with a low-resistance profile, such as chlorhexidine, benzoyl peroxide, and ethyl lactate have been used for decades in veterinary dermatology. However, new alternatives have been explored in the past decade. The goal of this review is to summarize the current knowledge on the antibacterial efficacy and clinical use, when reported, of “classic” and new treatment options for topically treating canine pyoderma. This review is intended to fill the gap from previous systematic reviews published in veterinary dermatology a decade ago. The studies reported in this review emphasize the need and desire for alternatives to the classic topical antimicrobials used in veterinary medicine to significantly reduce the use of systemic antibiotics in the spirit of appropriate antimicrobial stewardship.

Contributor Notes

Corresponding author: Dr. Santoro (dsantoro@ufl.edu)
  • 1.

    Burke M, Santoro D. Prevalence of multidrug-resistant coagulase-positive staphylococci in canine and feline dermatological patients over a 10-year period: a retrospective study. Microbiology. 2023;169(2):001300. doi:10.1099/mic.0.001300

    • Search Google Scholar
    • Export Citation
  • 2.

    Mueller RS, Bergvall K, Bensignor E, Bond R. A review of topical therapy for skin infections with bacteria and yeast. Vet Dermatol. 2012;23(4):330-e62. doi:10.1111/j.1365-3164.2012.01057.x

    • Search Google Scholar
    • Export Citation
  • 3.

    Hillier A, Lloyd DH, Weese JS, et al. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet Dermatol. 2014;25(3):163-e43. doi:10.1111/vde.12118

    • Search Google Scholar
    • Export Citation
  • 4.

    Morris DO, Loeffler A, Davis MF, Guardabassi L, Weese JS. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: diagnosis, therapeutic considerations and preventative measures: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet Dermatol. 2017;28(3):304-e69. doi:10.1111/vde.12444

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jeffers JG. Topical therapy for drug-resistant pyoderma in small animals. Vet Clin Small Anim. 2013;43(1):4150. doi:10.1016/j.cvsm.2012.09.006

    • Search Google Scholar
    • Export Citation
  • 6.

    Kwochka KW, Rosenkrantz WS. Shampoos and topical therapy. In: Hillier A, Foster AP, Kwochka KW, eds. Advances in Veterinary Dermatology. Vol 5. Blackwell Publishing; 2005:378386.

    • Search Google Scholar
    • Export Citation
  • 7.

    Mueller RS. Topical dermatological therapy. In: Maddison JE, Page SW, Church DB, eds. Small Animal Clinical Pharmacology. W.B. Saunders; 2006:546556.

    • Search Google Scholar
    • Export Citation
  • 8.

    Scott DW, Miller WH, Griffin CE. Dermatologic therapy. In: Muller & Kirk’s Small Animal Dermatology. 6th ed. W.B. Saunders; 2001:207273.

    • Search Google Scholar
    • Export Citation
  • 9.

    Gava Mazzola P, Jozala F, Novaes LCL, Moriel P, Vassoni penna TC. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz J Pharm Sci. 2009;45:241248. doi:10.1590/S1984-82502009000200008

    • Search Google Scholar
    • Export Citation
  • 10.

    Odore R, Colombatti Valle V, Re G. Efficacy of chlorhexidine against some strains of cultured and clinically isolated microorganisms. Vet Res Commun. 2000;24(4):229238. doi:10.1023/A:1006442715761

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Delany CM, Yong S, Gajjar M, Jacobs G, Bouchard C. In vitro study of the efficacy of chlorhexidine in the management of infectious keratitis. Invest Ophthalmol Vis Sci. 2005;46:4881.

    • Search Google Scholar
    • Export Citation
  • 12.

    Banovic F, Bozic F, Lemo N. In vitro comparison of the effectiveness of polihexanide and chlorhexidine against canine isolates of Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Malassezia pachydermatis. Vet Dermatol. 2013;24(4):409413, e88e89. doi:10.1111/vde.12048

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Santoro D, Kher L, Chala V, Navarro C. Evaluation of the effects of chlorhexidine digluconate with and without cBD103 or cCath against multidrug-resistant clinical isolates of Staphylococcus pseudintermedius. Vet Dermatol. 2022;33(1):17-e6. doi:10.1111/vde.13018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Murayama N, Nagata M, Terada Y, et al. In vitro antiseptic susceptibilities for Staphylococcus pseudintermedius isolated from canine superficial pyoderma in Japan. Vet Dermatol. 2013;24(1):126-e29. doi:10.1111/j.1365-3164.2012.01103.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Murayama N, Terada Y, Okuaki M, Nagata M. Dose assessment of 2% chlorhexidine acetate for canine superficial pyoderma. Vet Dermatol. 2011;22(5):449453. doi:10.1111/j.1365-3164.2011.00968.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lloyd DH, Lampert AI. Activity of chlorhexidine shampoos in vitro against Staphylococcus intermedius, Pseudomonas aeruginosa and Malassezia pachydermatis. Vet Rec. 1999;144(119):536537. doi:10.1136/vr.144.19.536

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bloom P. Canine superficial bacterial folliculitis: current understanding of its etiology, diagnosis and treatment. Vet J. 2014;199(2):217222. doi:10.1016/j.tvjl.2013.11.014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Clark SM, Loeffler A, Bond R. Susceptibility in vitro of canine methicillin-resistant and -susceptible staphylococcal isolates to fusidic acid, chlorhexidine and miconazole: opportunities for topical therapy of canine superficial pyoderma. J Antimicrob Chemother. 2015;70(7):20482052. doi:10.1093/jac/dkv056

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Valentine BK, Dew W, Yu A, Weese JS. In vitro evaluation of topical biocide and antimicrobial susceptibility of Staphylococcus pseudintermedius from dogs. Vet Dermatol. 2012;23(6):493-e95. doi:10.1111/j.1365-3164.2012.01095.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Clark SM, Loeffler A, Schmidt VM, et al. Interaction of chlorhexidine with trisEDTA or miconazole in vitro against canine meticillin-resistant and -susceptible Staphylococcus pseudintermedius isolates from two UK regions. Vet Dermatol. 2016;27(6):340-e84. doi:10.1111/vde.12357

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ramos SJ, Woodward M, Hoppers SM, Liu CC, Pucheu-Haston CM, Mitchell MS. Residual antibacterial activity of canine hair treated with five mousse products against Staphylococcus pseudintermedius in vitro. Vet Dermatol. 2019;30(3):183-e57. doi:10.1111/vde.12737

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mesman ML, Kirby AL, Rosenkrantz WS, Griffin CE. Residual antibacterial activity of canine hair treated with topical antimicrobial sprays against Staphylococcus pseudintermedius in vitro. Vet Dermatol. 2016;27(4):261-e61. doi:10.1111/vde.12318

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rafferty R, Robinson VH, Harris J, Argyle SA, Nuttall TJ. A pilot study of the in vitro antimicrobial activity and in vivo residual activity of chlorhexidine and acetic acid/boric acid impregnated cleansing wipes. BMC Vet Res. 2019;15(1):382. doi:10.1186/s12917-019-2098-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kloos I, Straubinger RK, Werckenthin C, Mueller RS. Residual antibacterial activity of dog hairs after therapy with antimicrobial shampoos. Vet Dermatol. 2013;24(2):250-e54. doi:10.1111/vde.12012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wu CY, Parsiola R, Mitchell M, et al. Evaluation of residual antibacterial effects on canine skin surface and hairs following treatment with five commercial mousse products. Vet Dermatol. 2022;33:279.

    • Search Google Scholar
    • Export Citation
  • 26.

    Maxwell EA, Bennett RA, Mitchell MA. Efficacy of application of an alcohol-based antiseptic hand rub or a 2% chlorhexidine gluconate scrub for immediate reduction of the bacterial population on the skin of dogs. Am J Vet Res. 2018;79(9):10011007. doi:10.2460/ajvr.79.9.1001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Borio S, Colombo S, La Rosa G, De Lucia M, Damborg P, Guardabassi L. Effectiveness of a combined (4% chlorhexidine digluconate shampoo and solution) protocol in MRS and non-MRS canine superficial pyoderma: a randomized, blinded, antibiotic-controlled study. Vet Dermatol. 2015;26(5):339-e72. doi:10.1111/vde.12233

    • Search Google Scholar
    • Export Citation
  • 28.

    Hsiao YH, Imanishi I, Iyori K. Efficacy of olanexidine gluconate in canine superficial pyoderma: a randomised, single-blinded controlled trial. Vet Dermatol. 2021;32(6):664-e174. doi:10.1111/vde.13038

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gatellet M, Kesteman R, Baulez B, et al. Performance of daily pads containing ophytrium and chlorhexidine digluconate 3% in dogs with local cutaneous bacterial and/or Malassezia overgrowth. Front Vet Sci. 2021;8:579074. doi:10.3389/fvets.2021.579074

    • Search Google Scholar
    • Export Citation
  • 30.

    Melekwe GO, Uwagie-Ero EA, Zoaka HA, Odigie EA. Comparative clinical effectiveness of preoperative skin antiseptic preparations of chlorhexidine gluconate and povidone iodine for preventing surgical site infections in dogs. Int J Vet Sci Med. 2018;6(1):113116. doi:10.1016/j.ijvsm.2018.03.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Coskun Ö, Viskjer S. Chlorhexidine shampooing of dogs the night before elective surgery: are human recommendations applicable to veterinary medicine? Can J Vet Res. 2022;86(4):306310.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Wirth H, Sprügel D, Gloor M. Untersuchungen zur Wirkung von Benzoylperoxid auf die Talgdrü sensekretion. Dermatol Monatsschr. 1983;169(5):289293.

    • Search Google Scholar
    • Export Citation
  • 33.

    Fakhouri T, Yentzer BA, Feldman SR. Advancement in benzoyl peroxide-based acne treatment: methods to increase both efficacy and tolerability. J Drugs Dermatol. 2009;8(7):657661.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Harper JC. Benzoyl peroxide development, pharmacology, formulation and clinical uses in topical fixed-combinations. J Drugs Dermatol. 2010;9(5):482487.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sagransky M, Yentzer BA, Feldman SR. Benzoyl peroxide: a review of its current use in the treatment of acne vulgaris. Expert Opin Pharmacother. 2009;10(15):25552562. doi:10.1517/14656560903277228

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Prottey C, George D, Leech RW, Black JG, Howes D, Vickers CF. The mode of action of ethyl lactate as a treatment for acne. Br J Dermatol. 1984;110(4):475485. doi:10.1111/j.1365-2133.1984.tb04663.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Guaguere E. Topical treatment of canine and feline pyoderma. Vet Dermatol. 1996;7(3):145151. doi:10.1111/j.1365-3164.1996.tb00239.x

  • 38.

    Loeffler A, Cobb MA, Bond R. Comparison of a chlorhexidine and a benzoyl peroxide shampoo as sole treatment in canine superficial pyoderma. Vet Rec. 2011;169(10):249. doi:10.1136/vr.d4400

    • Search Google Scholar
    • Export Citation
  • 39.

    Young R, Buckley L, McEwan N, Nuttall T. Comparative in vitro efficacy of antimicrobial shampoos: a pilot study. Vet Dermatol. 2012;23(1):36-e8. doi:10.1111/j.1365-3164.2011.01002.x

    • Search Google Scholar
    • Export Citation
  • 40.

    Boyen F, Verstappen KM, De Bock M, et al. In vitro antimicrobial activity of miconazole and polymyxin B against canine meticillin-resistant Staphylococcus aureus and meticillin-resistant Staphylococcus pseudintermedius isolates. Vet Dermatol. 2012;23(4):381-e70. doi:10.1111/j.1365-3164.2012.01040.x

    • Search Google Scholar
    • Export Citation
  • 41.

    Voget M, Lorenz D, Lieber-Tenorio E, Hauck R, Meyer M, Cieslicki M. Is transmission electron microscopy (TEM) a promising approach for qualitative and quantitative investigations of polymyxin B and miconazole interactions with cellular and subcellular structures of Staphylococcus pseudintermedius, Escherichia coli, Pseudomonas aeruginosa and Malassezia pachydermatis? Vet Microbiol. 2015;181(3–4):261270. doi:10.1016/j.vetmic.2015.10.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Frosini SM, Bond R. Activity in vitro of clotrimazole against canine methicillin-resistant and susceptible Staphylococcus pseudintermedius. Antibiotics (Basel). 2017;6(4):29. doi:10.3390/antibiotics6040029

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Peck B, Workeneh B, Kadikoy H, Patel SJ, Abdellatif A. Spectrum of sodium hypochlorite toxicity in man-also a concern for nephrologists. NDT Plus. 2011;4(4):231235.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Maarouf M, Shi VY. Bleach for atopic dermatitis. Dermatitis. 2018;29(3):120126. doi:10.1097/DER.0000000000000358

  • 45.

    Wang L, Bassiri M, Najafi R, et al. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds. 2007;6:e5.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Eriksson S, van der Plas MJA, Morgelin M, Sonesson A. Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis. Br J Dermatol. 2017;177(2):513521. doi:10.1111/bjd.15410

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Banovic F, Lemo N. In vitro evaluation of the use of diluted sodium hypochlorite (bleach) against Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Malassezia pachydermatis. Vet Dermatol. 2014;25(3):233234. doi:10.1111/vde.12121

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Banovic F, Olivry T, Bäumer W, et al. Diluted sodium hypochlorite (bleach) in dogs: antiseptic efficacy, local tolerability and in vitro effect on skin barrier function and inflammation. Vet Dermatol. 2018;29(1):6-e5. doi:10.1111/vde.12487

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Fadok VA, Irwin K. Sodium hypochlorite/salicylic acid shampoo for treatment of canine staphylococcal pyoderma. J Am Anim Hosp Assoc. 2019;55(3):117123. doi:10.5326/JAAHA-MS-6628

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Li WR, Li HL, Shi QS, Sun TL, Xie XB, Song B, Huang XM. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl Microbiol Biotechnol. 2016;100(20):88658875. doi:10.1007/s00253-016-7692-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Comin VM, Lopes LQ, Quatrin PM, de Souza ME, Bonez PC, Pintos FG, Raffin RP, Vaucher Rde A, Martinez DS, Santos RC. Influence of Melaleuca alternifolia oil nanoparticles on aspects of Pseudomonas aeruginosa biofilm. Microb Pathog. 2016;93:120125. doi:10.1016/j.micpath.2016.01.019

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Melo AD, Amaral AF, Schaefer G, et al. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives. Can J Vet Res. 2015;79(4):285289.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Bensignor E, Fabriès L, Bailleux L. A split-body, randomized, blinded study to evaluate the efficacy of a topical spray composed of essential oils and essential fatty acids from plant extracts with antimicrobial properties. Vet Dermatol. 2016;27(6):464-e123. doi:10.1111/vde.12374

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Duangkaew L, Larsuprom L, Lekcharoensuk C, Chen C. Effect of a mixture of essential oils and a plant-based extract for the management of localized superficial pyoderma in dogs: an open-label clinical trial. Thai J Vet Med. 2017;47:513522.

    • Search Google Scholar
    • Export Citation
  • 55.

    Fadok VA, Seckerdieck F, Bensignor E, Noli C, Oliveira A, Mueller RS. Topical application of a proprietary blend of essential oils and plant extracts is associated with fewer relapses of pyoderma. Vet Dermatol. 2020;31(suppl 1):75.

    • Search Google Scholar
    • Export Citation
  • 56.

    Romero C, Sheinberg G, Cordero AM, Heredia R. Efficacy of proprietary formulations containing essential oils and plant extracts compared to chlorhexidine plus miconazole shampoo in canine superficial pyoderma. Vet Dermatol. 2020;31(suppl 1):44.

    • Search Google Scholar
    • Export Citation
  • 57.

    Arbab S, Ullah H, Weiwei W, et al. Comparative study of antimicrobial action of aloe vera and antibiotics against different bacterial isolates from skin infection. Vet Med Sci. 2021;7(5):20612067. doi:10.1002/vms3.488

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Kamr A, Arbaga A, El-Bahrawy A, Elsify A, Khaled H, Hassan H. The therapeutic efficacy of Aloe vera gel ointment on staphylococcal pyoderma in dogs. Vet World. 2020;13(11):23712380. doi:10.14202/vetworld.2020.2371-2380

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Santoro D, Bohannon M, Ahrens K, Navarro C, Gatto H, Marsella R. Evaluation on the effects of 0.1% Peumus boldus leaf and Spiraea ulmaria plant extract combination on bacterial colonization in canine atopic dermatitis: a preliminary randomized, placebo controlled, double-blinded study. Res Vet Sci. 2018;118:164170. doi:10.1016/j.rvsc.2018.02.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Bäumer W, Jacobs M, Tamamoto-Mochizuki C. Efficacy study of a topical treatment with a plant extract with antibiofilm activities using an in vivo model of canine superficial pyoderma. Vet Dermatol. 2020;31(2):8689. doi:10.1111/vde.12808

    • Search Google Scholar
    • Export Citation
  • 61.

    Lake KM, Rankin SC, Rosenkrantz WS, et al. In vitro efficacy of 0.2% and 0.4% sodium oxychlorosene against meticillin-resistant Staphylococcus pseudintermedius. Vet Dermatol. 34(1):3339. 2022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Kher L, Santoro D, Kelley K, Gibson D, Schultz G. Effect of Nanosulfur against multidrug-resistant Staphylococcus pseudintermedius and Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2022;106(8):32013213. doi:10.1007/s00253-022-11872-8

    • PubMed
    • Search Google Scholar
    • Export Citation

Advertisement