Electrocardiographic findings in healthy Cavalier King Charles Spaniels, Pugs, and English Bulldogs

Giovanni Romito Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, Italy

Search for other papers by Giovanni Romito in
Current site
Google Scholar
PubMed
Close
 DVM, MSc, PhD, DECVIM
,
Prisca Castagna Freelance veterinary cardiologist, Bologna, Italy

Search for other papers by Prisca Castagna in
Current site
Google Scholar
PubMed
Close
 DVM, MSc
,
Maria Chiara Sabetti Department of Veterinary Sciences, University of Parma, Parma, Italy

Search for other papers by Maria Chiara Sabetti in
Current site
Google Scholar
PubMed
Close
 DVM
, and
Mario Cipone Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, Italy

Search for other papers by Mario Cipone in
Current site
Google Scholar
PubMed
Close
 DVM

Abstract

OBJECTIVE

To describe the ECG findings in 3 different canine brachycephalic breeds: the Cavalier King Charles Spaniel, the Pug, and the English Bulldog (EB).

ANIMALS

135 healthy dogs (50 Cavalier King Charles Spaniels, 50 Pugs, and 35 EBs).

PROCEDURES

Medical records were retrospectively reviewed to identify healthy dogs ≥ 1 year old that had undergone an ECG. The Mann-Whitney U test or the Student t test were used to compare continuous variables between male and female dogs, whereas the χ2 test was used for categorical variables. Spearman correlation coefficients between ECG measurements and age and body weight were also calculated in the case of continuous variables, whereas the Kruskal-Wallis test was used for categorical ones.

RESULTS

Electrocardiographic parameters of healthy Cavalier King Charles Spaniels overall fitted with traditional reference intervals cited in textbooks; in contrast, 28% of Pugs and 20% of EBs showed a shift of the QRS-complex mean electrical axis (QRS-MEA). In Pugs and EBs, the mean/median QRS-MEA value was 56° (from 0° to 100°) and 59° (from 20° to 100°), respectively. All axis shifts were left shifts (in Pugs, from 0° to 34°; in EBs, 20° to 39°). Only a few meaningful differences were found when comparing ECG variables between males and females. Similarly, only 1 statistically significant correlation was found between ECG parameters and age and body weight.

CLINICAL RELEVANCE

Healthy Pugs and EBs present a trend to a left shift of the QRS-MEA. This should be considered when interpreting ECG tracings in these breeds.

Abstract

OBJECTIVE

To describe the ECG findings in 3 different canine brachycephalic breeds: the Cavalier King Charles Spaniel, the Pug, and the English Bulldog (EB).

ANIMALS

135 healthy dogs (50 Cavalier King Charles Spaniels, 50 Pugs, and 35 EBs).

PROCEDURES

Medical records were retrospectively reviewed to identify healthy dogs ≥ 1 year old that had undergone an ECG. The Mann-Whitney U test or the Student t test were used to compare continuous variables between male and female dogs, whereas the χ2 test was used for categorical variables. Spearman correlation coefficients between ECG measurements and age and body weight were also calculated in the case of continuous variables, whereas the Kruskal-Wallis test was used for categorical ones.

RESULTS

Electrocardiographic parameters of healthy Cavalier King Charles Spaniels overall fitted with traditional reference intervals cited in textbooks; in contrast, 28% of Pugs and 20% of EBs showed a shift of the QRS-complex mean electrical axis (QRS-MEA). In Pugs and EBs, the mean/median QRS-MEA value was 56° (from 0° to 100°) and 59° (from 20° to 100°), respectively. All axis shifts were left shifts (in Pugs, from 0° to 34°; in EBs, 20° to 39°). Only a few meaningful differences were found when comparing ECG variables between males and females. Similarly, only 1 statistically significant correlation was found between ECG parameters and age and body weight.

CLINICAL RELEVANCE

Healthy Pugs and EBs present a trend to a left shift of the QRS-MEA. This should be considered when interpreting ECG tracings in these breeds.

Contributor Notes

Corresponding author: Dr. Romito (giovanni.romito2@unibo.it)
  • 1.

    Sandøe P, Kondrup SV, Bennett PC, et al. Why do people buy dogs with potential welfare problems related to extreme conformation and inherited disease? A representative study of Danish owners of four small dog breeds. PLoS One. 2017;12(2):e0172091. doi:10.1371/journal.pone.0172091

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Le Top 20 des races préférées des Français. Société Centrale Canine. Accessed November 28, 2022. https://www.centrale-canine.fr/articles/statistiques-du-lof-en-2017-le-berger-australien-futur-ndeg1

    • Search Google Scholar
    • Export Citation
  • 3.

    Australia’s top trending dog breeds and names. Hill’s Pet Nutrition. Accessed November 28, 2022. https://www.hillspet.com.au/dog-care/australias-top-trending-dog-breeds

    • Search Google Scholar
    • Export Citation
  • 4.

    Leading 20 dog breeds in the United Kingdom (UK) in 2021, based on number of registrations. Statista. Accessed November 28, 2022. https://www.statista.com/statistics/915202/top-dog-breeds-by-registered-number-united-kingdom-uk/

    • Search Google Scholar
    • Export Citation
  • 5.

    Most popular breeds of 2021. American Kennel Club. Accessed November 28, 2022. https://www.akc.org/expert-advice/dog-breeds/most-popular-dog-breeds-of-2021/

    • Search Google Scholar
    • Export Citation
  • 6.

    O’Brien MJ, Beijerink NJ, Wade CM. Genetics of canine myxomatous mitral valve disease. Anim Genet. 2021;52(4):409421. doi:10.1111/age.13082

  • 7.

    Holdt SL, Peckens NK, Rosenthal S, Cober R. Arrhythmogenic right ventricular cardiomyopathy in Bulldogs: evaluation of clinical and histopathologic features, progression, and outcome in 71 dogs (2004-2016). J Vet Cardiol. 2022;40:170183. doi:10.1016/j.jvc.2021.10.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Misbach C, Lefebvre HP, Concordet D, et al. Echocardiography and conventional Doppler examination in clinically healthy adult Cavalier King Charles Spaniels: effect of body weight, age, and gender, and establishment of reference intervals. J Vet Cardiol. 2014;16(2):91100. doi:10.1016/j.jvc.2014.03.001

    • Search Google Scholar
    • Export Citation
  • 9.

    Vurucu M, Ekinci G, Gunes V. An echocardiographic study of breed-specific reference ranges in healthy French Bulldogs. Vet Radiol Ultrasound. 2021;62(5):573582. doi:10.1111/vru.12997

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wiegel PS, Nolte I, Mach R, Freise F, Bach JP. Reference ranges for standard-echocardiography in Pugs and impact of clinical severity of brachycephalic obstructive airway syndrome (BOAS) on echocardiographic parameters. BMC Vet Res. 2022;18(1):282. doi:10.1186/s12917-022-03348-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Romito G, Castagna P, Sabetti MC, Cipone M. Physiological shift of the ventricular mean electrical axis in healthy French Bulldogs: a retrospective electrocardiographic analysis of 80 healthy dogs. J Vet Cardiol. 2022;42:3442. doi:10.1016/j.jvc.2022.05.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Barbieri I. I tipi morfologici delle razze canine. In: Lezioni di Cinognostica. ENCI; 1975:127156.

  • 13.

    Bonetti F. Tipi morfologici e costituzionali nelle razze canine. In: Zoognostica del Cane. San Giorgio; 1995:6376.

  • 14.

    Groppetti D, Pecile A, Palestrini C, Marelli SP, Boracchi P. A national census of birth weight in purebred dogs in Italy. Animals (Basel). 2017;7(6):43. doi:10.3390/ani7060043

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Santilli RA, Porteiro Vázquez DM, Gerou-Ferriani M, Lombardo SF, Perego M. Development and assessment of a novel precordial lead system for accurate detection of right atrial and ventricular depolarization in dogs with various thoracic conformations. Am J Vet Res. 2019;80(4):358368. doi:10.2460/ajvr.80.4.358

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mateos Pañero M, Battaia S, Ramera L, Perego M, Santilli RA. R-peak time in clinically healthy dogs with different thoracic conformations. Vet J. 2021;268:105592. doi:10.1016/j.tvjl.2020.105592

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Tilley LP. Principles of electrocardiographic recording. In: Tilley LP, ed. Essentials of Canine and Feline Electrocardiography: Interpretation and Treatment. 3rd ed. Lippincott Williams & Wilkins; 1992:2139.

    • Search Google Scholar
    • Export Citation
  • 18.

    Thomas WP, Gaber CE, Jacobs GJ, et al. Recommendations for standards in transthoracic two-dimensional echocardiography in the dog and cat. Echocardiography Committee of the Specialty of Cardiology, American College of Veterinary Internal Medicine. J Vet Intern Med. 1993;7(4):247252. doi:10.1111/j.1939-1676.1993.tb01015.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Romito G, Castagna P, Pelle NG, Testa F, Sabetti MC, Cipone M. The canine T wave: a retrospective analysis on qualitative and quantitative T wave variables obtained in 129 healthy dogs and proposed reference intervals. J Vet Cardiol. 2022;42:5264. doi:10.1016/j.jvc.2022.06.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Romito G, Castagna P, Pelle NG, Testa F, Sabetti MC, Cipone M. Retrospective evaluation of the ST segment electrocardiographic features in 180 healthy dogs. J Small Anim Pract. 2022;63(10):756762. doi:10.1111/jsap.13532

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Romito G, Guglielmini C, Mazzarella MO, et al. Diagnostic and prognostic utility of surface electrocardiography in cats with left ventricular hypertrophy. J Vet Cardiol. 2018;20(5):364375. doi:10.1016/j.jvc.2018.07.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Tilley LP. The approach to the electrocardiogram. In: Tilley LP, ed. Essentials of Canine and Feline Electrocardiography: Interpretation and Treatment. 3rd ed. Lippincott Williams & Wilkins; 1992:4055.

    • Search Google Scholar
    • Export Citation
  • 23.

    Tilley LP. Analysis of canine P-QRS-T deflections. In: Tilley LP, ed. Essentials of Canine and Feline Electrocardiography: Interpretation and Treatment. 3rd ed. Lippincott Williams & Wilkins; 1992:5999.

    • Search Google Scholar
    • Export Citation
  • 24.

    Santilli RA, Moïse NS, Pariaut R, Perego M. Formation and interpretation of the electrocardiographic waves. In: Santilli RA, Moïse NS, Pariaut R, Perego M, eds. Electrocardiography of the Dog and Cat—Diagnosis of Arrhythmia. 2nd ed. Edra; 2018:3570.

    • Search Google Scholar
    • Export Citation
  • 25.

    Spiljak Pakkanen M, Domanjko Petrič A, Olsen LH, et al. Advanced electrocardiographic parameters change with severity of mitral regurgitation in Cavalier King Charles Spaniels in sinus rhythm. J Vet Intern Med. 2012;26(1):93100. doi:10.1111/j.1939-1676.2011.00845.x

    • Search Google Scholar
    • Export Citation
  • 26.

    Alspach J. Electrical axis: how to recognize deviations on the ECG and interpret them. Am J Nurs. 1979;79(11):19761983. doi:10.1097/00000446-197911000-00024

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Tilley P, Petersen D. Pulling axis together. Dimens Crit Care Nurs. 2003;22(5):210215. doi:10.1097/00003465-200309000-00003

  • 28.

    Gonin P. Uber die lage der elektrischen herzachse beim hund. In: Inaugural dissertation. University of Bern; 1962.

  • 29.

    Chastain CB, Riedesel DH, Pearson PT. McFee and Parungao orthogonal lead vectocardiography in normal dogs. Am J Vet Res. 1974;35(2):275280.

  • 30.

    Rishniw M, Porciello F, Erb HN, Fruganti G. Effect of body position on the 6-lead ECG of dogs. J Vet Intern Med. 2002;16(1):6973. doi:10.1111/j.1939-1676.2002.tb01608.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Thrall DE, Robertson ID. The thorax. In: Thrall DE, Robertson ID, eds. Atlas of Normal Radiographic Anatomy and Anatomic Variants in the Dog and Cat. Elsevier Saunders; 2011:128167.

    • Search Google Scholar
    • Export Citation
  • 32.

    Bahr R. Canine and feline cardiovascular system. In: Thrall DE, ed. Textbook of Veterinary Diagnostic Radiology. 7th ed. Saunders Elsevier; 2018:684709. doi:10.1016/B978-0-323-48247-9.00047-4

    • Search Google Scholar
    • Export Citation
  • 33.

    Hafkesbring EM, Drawe CE, Ashman RAI. Measurements for one hundred normal children. Am J Dis Child. 1937;53(6):14571469.

  • 34.

    Simonson E, Keys A. The effect of age and body weight on the electrocardiogram of healthy men. Circulation. 1952;6(5):749761. doi:10.1161/01.cir.6.5.749

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Luskin AJ, Whipple GH. Effects of age and habitus upon the mean electrical axis of the electrocardiogram in normal males. Ann Intern Med. 1961;55(4):610619. doi:10.7326/0003-4819-55-4-610

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Wershing JM, Walker CH. Influence of age, sex, and body habitus on the mean QRS electrical axis in childhood and adolescence. Br Heart J. 1963;25(5):601609. doi:10.1136/hrt.25.5.601

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Harvey ND. How old is my dog? Identification of rational age groupings in pet dogs based upon normative age-linked processes. Front Vet Sci. 2021;8:643085. doi:10.3389/fvets.2021.643085

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tilley LP. Generation of the electrocardiographic: basic principles. In: Tilley LP, ed. Essentials of Canine and Feline Electrocardiography: Interpretation and Treatment. 3rd ed. Lippincott Williams & Wilkins; 1992:118.

    • Search Google Scholar
    • Export Citation
  • 39.

    Petite A, Kirberger R. Mediastinum. In: Schwarz T, Saunders J, eds. Veterinary Computed Tomography. Wiley-Blackwell; 2011:249260.

  • 40.

    Romito G, Cipone M. Transient deep and giant negative T waves in dogs with myocardial injury. J Vet Cardiol. 2021;36:131140. doi:10.1016/j.jvc.2021.05.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Lepeschkin E. The configuration of the T wave and the ventricular action potential in different species of mammals. Ann N Y Acad Sci. 1965;127(1):170178. doi:10.1111/j.1749-6632.1965.tb49401.x

    • Search Google Scholar
    • Export Citation
  • 42.

    Blackburn H, Vasquez CL, Keys A. The aging electrocardiogram. A common aging process or latent coronary artery disease? Am J Cardiol. 1967;20(5):618627. doi:10.1016/0002-9149(67)90002-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Davainis GM, Meurs KM, Wright NA. The relationship of resting S-T segment depression to the severity of subvalvular aortic stenosis and the presence of ventricular premature complexes in the dog. J Am Anim Hosp Assoc. 2004;40(1):2023. doi:10.5326/0400020

    • Search Google Scholar
    • Export Citation
  • 44.

    Romito G, Fracassi F, Cipone M. Transient myocardial thickening associated with acute myocardial injury and congestive heart failure in two Toxoplasma gondii-positive cats. JFMS Open Rep. 2022;8(2):20551169221131266. doi:10.1177/20551169221131266

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Hill JD. The electrocardiogram in dogs with standardized body and limb positions. J Electrocardiol. 1968;1(2):175182. doi:10.1016/S0022-0736(68)80025-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Eckenfels A, Trieb G. The normal electrocardiogram of the conscious Beagle dog. Toxicol Appl Pharmacol. 1979;47(3):567584. doi:10.1016/0041-008X(79)90527-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Hanton G, Rabemampianina Y. The electrocardiogram of the Beagle dog: reference values and effect of sex, genetic strain, body position and heart rate. Lab Anim. 2006;40(2):123136. doi:10.1258/002367706776319088

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Mukherjee J, Mohapatra SS, Jana S, Das PK, Ghosh PR, Banerjee KDAD. A study on the electrocardiography in dogs: reference values and their comparison among breeds, sex, and age groups. Vet World. 2020;13(10):22162220. doi:10.14202/vetworld.2020.2216-2220

    • Search Google Scholar
    • Export Citation
  • 49.

    Mukherjee J, Das PK, Ghosh PR, et al. Electrocardiogram pattern of some exotic breeds of trained dogs: a variation study. Vet World. 2015;8(11):13171320. doi:10.14202/vetworld.2015.1317-1320

    • PubMed
    • Search Google Scholar
    • Export Citation

Advertisement