• 1.

    Peitel M. Frequenz der Extremitatenfrakturen und wirtschaftliche Schaden bei Pferd und Rind. Wien Tierarztl Monatsschr. 1971;58(4):158163.

  • 2.

    Gangl M, Grulke S, Serteyn D, Touati K. Retrospective study of 99 cases of bone fractures in cattle treated by external coaptation or confinement. Vet Rec. 2006;158(8):264268. doi:10.1136/vr.158.8.264

    • Search Google Scholar
    • Export Citation
  • 3.

    Ferguson J. Management and repair of bovine fractures. Compend Contin Educ Pract Vet. 1982;4:S128S135.

  • 4.

    Crawford W, Fretz PB. Long bone fractures in large animals. A retrospective study. Vet Surg. 1985;14(4):295302. doi:10.1111/j.1532-950X.1985.tb00889.x

    • Search Google Scholar
    • Export Citation
  • 5.

    Arican M. A retrospective study of fractures in neonatal calves: 181 cases (2002–2012). Pak Vet J. 2016;34(2):247250.

  • 6.

    Martens A, Steenhaut M, Gasthuys F, De Cupere C, De Moor A, Verschooten F. Conservative and surgical treatment of tibial fractures in cattle. Vet Rec. 1998;143(1):1216. doi:10.1136/vr.143.1.12

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Adams SB, Fessler JF. Treatment of radial-ulnar and tibial fractures in cattle, using a modified Thomas splint-cast combination. J Am Vet Med Assoc. 1983;183(4):430433.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Desrochers A, Steiner A, Anderson DE, et al. Surgery of the bovine musculoskeletal system. In: Fubini SL, Ducharme NG, eds. Farm Animal Surgery. 2nd ed. WB Saunders, 2017;344438.

    • Search Google Scholar
    • Export Citation
  • 9.

    Liu R, Schindeler A, Little DG. The potential role of muscle in bone repair. J Musculoskelet Neuronal Interact. 2010;10(1):7176.

  • 10.

    McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br. 1978;60-B(2):150162. doi:10.1302/0301-620X.60B2.350882

  • 11.

    Rhinelander FW. Tibial blood supply in relation to fracture healing. Clin Orthop Relat Res. 1974;105:3481.

  • 12.

    Trueta J. Blood supply and the rate of healing of tibial fractures. Clin Orthop Relat Res. 1974;105:1126.

  • 13.

    Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am. 1995;77(6):940956. doi:10.2106/00004623-199506000-00016

  • 14.

    do Nascimento RM, de Carvalho VR. Dynamics of the interaction between body fluid and Ti cp: the influence of surface functionalization in the first stages of osseointegration. Rev Bras Eng Bioméd. 2014;30(1):8390.

    • Search Google Scholar
    • Export Citation
  • 15.

    Tennent-Brown BS, Wilkins PA, Lindborg S, Russell G, Boston RC. Sequential plasma lactate concentrations as prognostic indicators in adult equine emergencies. J Vet Intern Med. 2010;24(1):198205. doi:10.1111/j.1939-1676.2009.0419.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mikkelsen ME, Miltiades AN, Gaieski DF, et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med. 2009;37(5):16701677. doi:10.1097/CCM.0b013e31819fcf68

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Borchers A, Wilkins PA, Marsh PM, et al. Sequential L-lactate concentration in hospitalised equine neonates: a prospective multicentre study. Equine Vet J Suppl. 2013;45(S45):27. doi:10.1111/evj.12165

    • Search Google Scholar
    • Export Citation
  • 18.

    Zacher LA, Berg J, Shaw SP, Kudej RK. Association between outcome and changes in plasma lactate concentration during presurgical treatment in dogs with gastric dilatation-volvulus: 64 cases (2002–2008). J Am Vet Med Assoc. 2010;236(8):892897. doi:10.2460/javma.236.8.892

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Coghe J, Uystepruyst C, Bureau F, Detilleux J, Art T, Lekeux P. Validation and prognostic value of plasma lactate measurement in bovine respiratory disease. Vet J. 2000;160(2):139146. doi:10.1053/tvjl.2000.0487

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Figueiredo MD, Nydam DV, Perkins GA, Mitchell HM, Divers TJ. Prognostic value of plasma L-lactate concentration measured cow-side with a portable clinical analyzer in Holstein dairy cattle with abomasal disorders. J Vet Intern Med. 2006;20(6):14631470. doi:10.1892/0891-6640(2006)20[1463:pvoplc]2.0.co;2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Boulay G, Francoz D, Doré E, et al. Preoperative cow-side lactatemia measurement predicts negative outcome in Holstein dairy cattle with right abomasal disorders. J Dairy Sci. 2014;97(1):212221. doi:10.3168/jds.2013-6898

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Buczinski S, Boulay G, Francoz D. Preoperative and postoperative L-lactatemia assessment for the prognosis of right abomasal disorders in dairy cattle. J Vet Intern Med. 2015;29(1):375380. doi:10.1111/jvim.12490

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stafford KJ, Mellor D, Todd SE, Gregory NG, Bruce RA, Ward RN. The physical state and plasma biochemical profile of young calves on arrival at a slaughter plant. N Z Vet J. 2001;49(4):142149. doi:10.1080/00480169.2001.36222

    • Search Google Scholar
    • Export Citation
  • 24.

    Apple JK, Kegley EB, Galloway DL, Wistuba TJ, Rakes LK. Duration of restraint and isolation stress as a model to study the dark-cutting condition in cattle. J Anim Sci. 2005;83(5):12021214.

    • Search Google Scholar
    • Export Citation
  • 25.

    Escalera-Valente F, González-Montaña JR, de la Varga MEA, Lomillos-Pérez JM, Gaudioso-Lacasa VR. Influence of intense exercise on acid-base, blood gas and electrolyte status in bulls. Res Vet Sci. 2013;95(2):623628. doi:10.1016/j.rvsc.2013.03.018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Uzoigwe CE, Venkatesan M, Smith R, et al. Serum lactate is a prognostic indicator in patients with hip fracture. Hip Int. 2012;22(5):580584. doi:10.5301/HIP.2012.9762

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Venkatesan M, Smith R, Balasubramanian S, et al. Serum lactate as a marker of mortality in patients with hip fracture: a prospective study. Injury. 2015;46(11):22012205. doi:10.1016/j.injury.2015.06.038

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Chen X, Zhang J, Zhang Y, et al. Serum lactate concentration on admission to hospital predicts the postoperative mortality of elderly patients with hip fractures 30 days after surgery. Am J Transl Res. 2021;13(9):1036310371.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Demirel E, Şahin A. Predictive value of blood parameters and comorbidities on three-month mortality in elderly patients with hip fracture. Cureus. 2021;13(10):e18634. doi:10.7759/cureus.18634

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Zhang Y, Huang L, Liu Y, Chen Q, Li X, Hu J. Prediction of mortality at one year after surgery for pertrochanteric fracture in the elderly via a Bayesian belief network. Injury. 2020;51(2):407413. doi:10.1016/j.injury.2019.11.029

    • Search Google Scholar
    • Export Citation
  • 31.

    Crowl AC, Young JS, Kahler DM, Claridge JA, Chrzanowski DS, Pomphrey M. Occult hypoperfusion is associated with increased morbidity in patients undergoing early femur fracture fixation. J Trauma. 2000;48(2):260267. doi:10.1097/00005373-200002000-00011

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Grey B, Rodseth RN, Muckart DJ. Early fracture stabilisation in the presence of subclinical hypoperfusion. Injury. 2013;44(2):217220. doi:10.1016/j.injury.2012.08.062

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Buczinski S, Doré E, Boulay G, Francoz D. Validation of the handheld Lactate-Pro analyzer for measurement of blood L-lactate concentration in cattle. Vet Clin Pathol. 2014;43(4):567572. doi:10.1111/vcp.12185

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Yim GH, Hardwicke JT. The evolution and interpretation of the Gustilo and Anderson classification. J Bone Joint Surg Am. 2018;100(24):e152. doi:10.2106/JBJS.18.00342

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Leary S, Underwood W, Anthony R, et al. AVMA guidelines for the euthanasia of animals: 2020 edition. AVMA. Accessed October 19, 2022. https://www.avma.org/resources-tools/avma-policies/avma-guidelines-euthanasia-animals

    • Search Google Scholar
    • Export Citation
  • 36.

    Karagiannis MH, Reniker AN, Kerl ME, Mann FA. Lactate measurement as an indicator of perfusion. Compend Contin Educ Vet. 2006;28(4):287298.

    • Search Google Scholar
    • Export Citation
  • 37.

    Guzon-Illescas O, Perez Fernandez E, Crespí Villarias N, et al. Mortality after osteoporotic hip fracture: incidence, trends, and associated factors. J Orthop Surg Res. 2019;14(1):203. doi:10.1186/s13018-019-1226-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Chudalla R, Baerwalde S, Schneider G, Maassen N. Local and systemic effects on blood lactate concentration during exercise with small and large muscle groups. Pflugers Arch. 2006;452(6):690697. doi:10.1007/s00424-006-0082-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Jose JM, Cherian A, Bidkar PU, Mohan VK. The agreement between arterial and venous lactate in patients with sepsis. Int J Clin Pract. 2021;75(8):e14296. doi:10.1111/ijcp.14296

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Raa A, Sunde GA, Bolann B, et al. Validation of a point-of-care capillary lactate measuring device (Lactate Pro 2). Scand J Trauma Resusc Emerg Med. 2020;28(1):83. doi:10.1186/s13049-020-00776-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Mulon P-Y. Management of long bone fractures in cattle. In Pract. 2013;35(5):265271. doi:10.1136/inp.f2869

  • 42.

    Dickson KF, Katzman S, Paiement G. The importance of the blood supply in the healing of tibial fractures. Contemp Orthop. 1995;30(6):489493.

  • 43.

    Brinker MR, Bailey DE Jr. Fracture healing in tibia fractures with an associated vascular injury. J Trauma. 1997;42(1):1119. doi:10.1097/00005373-199701000-00004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Lu C, Rollins M, Hou H, et al. Tibial fracture decreases oxygen levels at the site of injury. Iowa Orthop J. 2008;28:1421.

  • 45.

    Lu C, Miclau T, Hu D, Marcucio RS. Ischemia leads to delayed union during fracture healing: a mouse model. J Orthop Res. 2007;25(1):5161. doi:10.1002/jor.20264

    • PubMed
    • Search Google Scholar
    • Export Citation

Advertisement

Admission lactate concentration has predictive value for death or severe complications within 30 days after admission in cattle with long-bone fractures

Caroline ConstantAO Research Institute Davos, Davos, Switzerland
Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada

Search for other papers by Caroline Constant in
Current site
Google Scholar
PubMed
Close
 DMV, MSc, MENG, DACVS-LA, DECVS
,
Emma MarchionattiDepartment of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada
Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland

Search for other papers by Emma Marchionatti in
Current site
Google Scholar
PubMed
Close
 DMV, MSc, DACVS-LA, DECVS
,
André DesrochersDepartment of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada

Search for other papers by André Desrochers in
Current site
Google Scholar
PubMed
Close
 DMV, MS, DACVS, DipECBHM
,
Marie BabkineDepartment of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada

Search for other papers by Marie Babkine in
Current site
Google Scholar
PubMed
Close
 DMV, MSc, DipECBHM
, and
Sylvain NicholsDepartment of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada

Search for other papers by Sylvain Nichols in
Current site
Google Scholar
PubMed
Close
 DMV, MS, DACVS

Abstract

OBJECTIVE

To determine the prognostic value of lactate concentration measurements at admission in cattle with long-bone fractures.

ANIMALS

43 cattle with long-bone fractures between July 2016 and Dec 2018.

PROCEDURES

In this prospective cohort study, lactate concentration was measured in systemic venous blood and locally in capillary blood sampled from the fractured and contralateral limbs of cattle and assessed for outcome prediction. The cutoff value was determined by maximizing the Youden index from receiver-operating characteristic curves. Multivariable logistic regression was employed to verify whether higher lactate concentrations compared with the cutoff value were an independent risk factor for poor outcomes at 30 days or 3 years after admission.

RESULTS

Poor outcome was associated with higher capillary lactate concentration in the fractured limb (P < .001) and greater difference with systemic blood (P = .005). A cutoff value of lactate difference ≥ 2.4 mmol/L (sensitivity = 0.80; specificity = 0.965) between capillary lactate in the fractured limb and systemic blood was the best predictor of death ≤ 30 days after admission (P < .001). Multivariable analysis revealed that this cutoff value was an independent risk factor for 30-day and 3-year outcomes (P < .001).

CLINICAL RELEVANCE

Admission blood lactate concentration difference ≥ 2.4 mmol/L between the fractured limb and systemic blood was a robust and independent predictor of outcome for cattle of the present report. Lactate metabolism is locally impaired in fractured limbs of nonsurviving or at higher complication risk cattle, which may help identify patients at high risk for poor outcomes.

Abstract

OBJECTIVE

To determine the prognostic value of lactate concentration measurements at admission in cattle with long-bone fractures.

ANIMALS

43 cattle with long-bone fractures between July 2016 and Dec 2018.

PROCEDURES

In this prospective cohort study, lactate concentration was measured in systemic venous blood and locally in capillary blood sampled from the fractured and contralateral limbs of cattle and assessed for outcome prediction. The cutoff value was determined by maximizing the Youden index from receiver-operating characteristic curves. Multivariable logistic regression was employed to verify whether higher lactate concentrations compared with the cutoff value were an independent risk factor for poor outcomes at 30 days or 3 years after admission.

RESULTS

Poor outcome was associated with higher capillary lactate concentration in the fractured limb (P < .001) and greater difference with systemic blood (P = .005). A cutoff value of lactate difference ≥ 2.4 mmol/L (sensitivity = 0.80; specificity = 0.965) between capillary lactate in the fractured limb and systemic blood was the best predictor of death ≤ 30 days after admission (P < .001). Multivariable analysis revealed that this cutoff value was an independent risk factor for 30-day and 3-year outcomes (P < .001).

CLINICAL RELEVANCE

Admission blood lactate concentration difference ≥ 2.4 mmol/L between the fractured limb and systemic blood was a robust and independent predictor of outcome for cattle of the present report. Lactate metabolism is locally impaired in fractured limbs of nonsurviving or at higher complication risk cattle, which may help identify patients at high risk for poor outcomes.

Supplementary Materials

    • Supplementary Figure S1 (PDF 123 KB)

Contributor Notes

Corresponding author: Dr. Constant (caroline.constant@aofoundation.org)