Neutrophil-to-lymphocyte ratio is increased in dogs with acute congestive heart failure secondary to myxomatous mitral valve disease compared to both dogs with heart murmurs and healthy controls

Dylan J. DeProspero Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA

Search for other papers by Dylan J. DeProspero in
Current site
Google Scholar
PubMed
Close
 DVM
,
Rebecka S. Hess Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA

Search for other papers by Rebecka S. Hess in
Current site
Google Scholar
PubMed
Close
 DVM, MSCE, DACVIM
, and
Deborah C. Silverstein Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA

Search for other papers by Deborah C. Silverstein in
Current site
Google Scholar
PubMed
Close
 DVM, DACVECC

Abstract

OBJECTIVE

To retrospectively evaluate neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as a biomarker for severity and short-term outcomes of congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD) in dogs.

ANIMALS

47 dogs with CHF secondary to MMVD, 47 dogs with presumptive preclinical MMVD, and 47 control dogs.

METHODS

Medical record data (signalment, physical examination findings, medical treatments instituted, American College of Veterinary Internal Medicine MMVD stage, length of hospitalization, outcome, and hospital re-presentation due to CHF) from March 2012 through March 2022 for each dog were collected. Statistical analyses were performed with Mann-Whitney, Spearman correlation, and Fisher exact tests.

RESULTS

NLR (but not PLR) was significantly higher in dogs with CHF secondary to MMVD (6.41) compared to presumptive preclinical MMVD dogs (4.66; P < .001) and control dogs (3.95; P < .001). Dogs with higher NLR and PLR received significantly higher cumulative dosages of loop-diuretic therapy during hospitalization (ρ = 0.3, P = .04; and ρ = 0.4, P = .02, respectively). There was a positive association between NLR and duration of oxygen supplementation within the CHF group (ρ = 0.4; P = .01).

CLINICAL RELEVANCE

The increased diuretic dose and time receiving oxygen supplementation may represent increased disease severity for which NLR (and to a lesser extent PLR) may serve as a readily available marker. The data presented provide information regarding some of the systemic inflammatory changes seen in CHF secondary to MMVD in dogs. Future research should include prospective, longitudinal studies to provide insight into the long-term prognostic value of NLR and PLR in dogs with CHF.

Abstract

OBJECTIVE

To retrospectively evaluate neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as a biomarker for severity and short-term outcomes of congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD) in dogs.

ANIMALS

47 dogs with CHF secondary to MMVD, 47 dogs with presumptive preclinical MMVD, and 47 control dogs.

METHODS

Medical record data (signalment, physical examination findings, medical treatments instituted, American College of Veterinary Internal Medicine MMVD stage, length of hospitalization, outcome, and hospital re-presentation due to CHF) from March 2012 through March 2022 for each dog were collected. Statistical analyses were performed with Mann-Whitney, Spearman correlation, and Fisher exact tests.

RESULTS

NLR (but not PLR) was significantly higher in dogs with CHF secondary to MMVD (6.41) compared to presumptive preclinical MMVD dogs (4.66; P < .001) and control dogs (3.95; P < .001). Dogs with higher NLR and PLR received significantly higher cumulative dosages of loop-diuretic therapy during hospitalization (ρ = 0.3, P = .04; and ρ = 0.4, P = .02, respectively). There was a positive association between NLR and duration of oxygen supplementation within the CHF group (ρ = 0.4; P = .01).

CLINICAL RELEVANCE

The increased diuretic dose and time receiving oxygen supplementation may represent increased disease severity for which NLR (and to a lesser extent PLR) may serve as a readily available marker. The data presented provide information regarding some of the systemic inflammatory changes seen in CHF secondary to MMVD in dogs. Future research should include prospective, longitudinal studies to provide insight into the long-term prognostic value of NLR and PLR in dogs with CHF.

Contributor Notes

Corresponding author: Dr. Silverstein (dcsilver@vet.upenn.edu)
  • 1.

    Pedersen HD, Häggström J. Mitral valve prolapse in the dog: a model of mitral valve prolapse in man. Cardiovasc Res. 2000;47(2):234-243. doi:10.1016/s0008-6363(00)00113-9

    • Search Google Scholar
    • Export Citation
  • 2.

    Hadian M, Corcoran BM, Han RI, Grossmann JG, Bradshaw JP. Collagen organization in canine myxomatous mitral valve disease: an x-ray diffraction study. Biophys J. 2007;93(7):2472-2476. doi:10.1529/biophysj.107.107847

    • Search Google Scholar
    • Export Citation
  • 3.

    Hadian M, Corcoran BM, Bradshaw J. A differential scanning calorimetry study of collagen phase transition in myxomatous mitral valves. Biophys J. 2007;44A.

    • Search Google Scholar
    • Export Citation
  • 4.

    Corcoran BM, Black A, Anderson H, et al. Identification of surface morphologic changes in the mitral valve leaflets and chordae tendineae of dogs with myxomatous degeneration. Am J Vet Res. 2004;65(2):198-206. doi:10.2460/ajvr.2004.65.198

    • Search Google Scholar
    • Export Citation
  • 5.

    Häggström J, Kvart C, Pedersen HD. Acquired valvular heart disease. In: Ettinger SJ, Feldman EC, eds. Textbook of Veterinary Internal Medicine. 6th ed. Elsevier Saunders; 2005:1022-1039.

    • Search Google Scholar
    • Export Citation
  • 6.

    Detweiler DK, Patterson DF, Hubben K, Botts RP. The prevalence of spontaneously occurring cardiovascular disease in dogs. Am J Public Health Nations Health. 1961;51(2):228-241. doi:10.2105/ajph.51.2.228

    • Search Google Scholar
    • Export Citation
  • 7.

    Borgarelli M, Buchanan JW. Historical review, epidemiology and natural history of degenerative mitral valve disease. J Vet Cardiol. 2012;14(1):93-101. doi:10.1016/j.jvc.2012.01.011

    • Search Google Scholar
    • Export Citation
  • 8.

    Freeman LM, Rush JE, Kehayias JJ, et al. Nutritional alterations and the effect of fish oil supplementation in dogs with heart failure. J Vet Intern Med. 1998;12(6):440-448. doi:10.1111/j.1939-1676.1998.tb02148.x

    • Search Google Scholar
    • Export Citation
  • 9.

    Freeman LM. Cachexia and sarcopenia: emerging syndromes of importance in dogs and cats. J Vet Intern Med. 2012;26(1):3-17. doi:10.1111/j.1939-1676.2011.00838.x

    • Search Google Scholar
    • Export Citation
  • 10.

    Rauchhaus M, Doehner W, Francis DP, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000;102(25):3060-3067. doi:10.1161/01.cir.102.25.3060

    • Search Google Scholar
    • Export Citation
  • 11.

    Mattin MJ, Boswood A, Church DB, Brodbelt DC. Prognostic factors in dogs with presumed degenerative mitral valve disease attending primary-care veterinary practices in the United Kingdom. J Vet Intern Med. 2019;33(2):432-444. doi:10.1111/jvim.15251

    • Search Google Scholar
    • Export Citation
  • 12.

    Zahorec R. Ratio of neutrophil to lymphocyte counts-rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102(1):5-14.

    • Search Google Scholar
    • Export Citation
  • 13.

    Kang MH, Go SI, Song HN, et al. The prognostic impact of the neutrophil-to-lymphocyte ratio in patients with small-cell lung cancer. Br J Cancer. 2014;111(3):452-460. doi:10.1038/bjc.2014.317

    • Search Google Scholar
    • Export Citation
  • 14.

    Ayça B, Akın F, Celik O, et al. Neutrophil to lymphocyte ratio is related to stent thrombosis and high mortality in patients with acute myocardial infarction. Angiology. 2015;66(6):545-552. doi:10.1177/0003319714542997

    • Search Google Scholar
    • Export Citation
  • 15.

    Uthamalingam S, Patvardhan EA, Subramanian S, et al. Utility of the neutrophil to lymphocyte ratio in predicting long-term outcomes in acute decompensated heart failure. Am J Cardiol. 2011;107(3):433-438. doi:10.1016/j.amjcard.2010.09.039

    • Search Google Scholar
    • Export Citation
  • 16.

    Davis CJ, Gurbel PA, Gattis WA, et al. Hemostatic abnormalities in patients with congestive heart failure: diagnostic significance and clinical challenge. Int J Cardiol. 2000;75(1):15-21. doi:10.1016/s0167-5273(00)00300-4

    • Search Google Scholar
    • Export Citation
  • 17.

    Marcucci R, Gori AM, Giannotti F, et al. Markers of hypercoagulability and inflammation predict mortality in patients with heart failure. J Thromb Haemost. 2006;4(5):1017-1022. doi:10.1111/j.1538-7836.2006.01916.x

    • Search Google Scholar
    • Export Citation
  • 18.

    Li DY, Hao XY, Ma TM, Dai HX, Song YS. The prognostic value of platelet-to-lymphocyte ratio in urological cancers: a meta-analysis. Sci Rep. 2017;7(1):15387. doi:10.1038/s41598-017-15673-2

    • Search Google Scholar
    • Export Citation
  • 19.

    Song J, Chen C, Wang Q, Wang LH, Cao J, Guo PX. Platelet-to-lymphocyte ratio (PLR) is associated with immune thrombocytopenia (ITP) recurrence: a retrospective cohort study. Med Sci Monit. 2019;25:8683-8693. doi:10.12659/MSM.917531

    • Search Google Scholar
    • Export Citation
  • 20.

    Yüksel M, Yıldız A, Oylumlu M, et al. The association between platelet/lymphocyte ratio and coronary artery disease severity. Anatol J Cardiol. 2015;15(8):640-647. doi:10.5152/akd.2014.5565

    • Search Google Scholar
    • Export Citation
  • 21.

    Pourafkari L, Wang CK, Tajlil A, Afshar AH, Schwartz M, Nader ND. Platelet-lymphocyte ratio in prediction of outcome of acute heart failure. Biomark Med. 2018;12(1):63-70. doi:10.2217/bmm-2017-0193

    • Search Google Scholar
    • Export Citation
  • 22.

    Durmus E, Kivrak T, Gerin F, Sunbul M, Sari I, Erdogan O. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio are predictors of heart failure. Arq Bras Cardiol. 2015;105(6):606-613. doi:10.5935/abc.20150126

    • Search Google Scholar
    • Export Citation
  • 23.

    Macfarlane L, Morris J, Pratschke K, et al. Diagnostic value of neutrophil-lymphocyte and albumin-globulin ratios in canine soft tissue sarcoma. J Small Anim Pract. 2016;57(3):135-141. doi:10.1111/jsap.12435

    • Search Google Scholar
    • Export Citation
  • 24.

    Benvenuti E, Pierini A, Gori E, Lucarelli C, Lubas G, Marchetti V. Neutrophil-to-lymphocyte ratio (NLR) in canine inflammatory bowel disease (IBD). Vet Sci. 2020;7(3):141. doi:10.3390/vetsci7030141

    • Search Google Scholar
    • Export Citation
  • 25.

    Park J, Lee D, Yun T, et al. Evaluation of the blood neutrophil-to-lymphocyte ratio as a biomarker for meningoencephalitis of unknown etiology in dogs. J Vet Intern Med. 2022;36(5):1719-1725. doi:10.1111/jvim.16512

    • Search Google Scholar
    • Export Citation
  • 26.

    Cristóbal JI, Duque FJ, Usón-Casaús J, Barrera R, López E, Pérez-Merino EM. Complete blood count-derived inflammatory markers changes in dogs with chronic inflammatory enteropathy treated with adipose-derived mesenchymal stem cells. Animals (Basel). 2022;12(20):2798. doi:10.3390/ani12202798

    • Search Google Scholar
    • Export Citation
  • 27.

    Dourmashkin LH, Lyons B, Hess RS, Walsh K, Silverstein DC. Evaluation of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in critically ill dogs. J Vet Emerg Crit Care (San Antonio). 2023;33(1):52-58. doi:10.1111/vec.13269

    • Search Google Scholar
    • Export Citation
  • 28.

    Faldyna M, Levá L, Knötigová P, Toman M. Lymphocyte subsets in peripheral blood of dogs-a flow cytometric study. Vet Immunol Immunopathol. 2001;82(1-2):23-37. doi:10.1016/s0165-2427(01)00337-3

    • Search Google Scholar
    • Export Citation
  • 29.

    Pedersen HD, Häggstrom J, Olsen LH, et al. Idiopathic asymptomatic thrombocytopenia in Cavalier King Charles Spaniels is an autosomal recessive trait. J Vet Intern Med. 2002;16(2):169-173. doi:10.1892/0891-6640(2002)016<0169:iatick>2.3.co;2

    • Search Google Scholar
    • Export Citation
  • 30.

    Zaldívar-López S, Marín LM, Iazbik MC, Westendorf-Stingle N, Hensley S, Couto CG. Clinical pathology of Greyhounds and other sighthounds. Vet Clin Pathol. 2011;40(4):414-425. doi:10.1111/j.1939-165X.2011.00360.x

    • Search Google Scholar
    • Export Citation
  • 31.

    Keene BW, Atkins CE, Bonagura JD, et al. ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet Intern Med. 2019;33(3):1127-1140. doi:10.1111/jvim.15488

    • Search Google Scholar
    • Export Citation
  • 32.

    Liu X. Classification accuracy and cut point selection. Stat Med. 2012;31(23):2676-2686. doi:10.1002/sim.4509

  • 33.

    Hodgson N, Llewellyn EA, Schaeffer DJ. Utility and prognostic significance of neutrophil-to-lymphocyte ratio in dogs with septic peritonitis. J Am Anim Hosp Assoc. 2018;54(6):351-359. doi:10.5326/JAAHA-MS-6808

    • Search Google Scholar
    • Export Citation
  • 34.

    Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology. 1990;1(1):43-46. doi:10.1097/00001648-199001000-00010

  • 35.

    Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. doi:10.3389/fphys.2018.00113

    • Search Google Scholar
    • Export Citation
  • 36.

    Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L; CONSENSUS Trial Study Group. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. Circulation. 1990;82(5):1730-1736. doi:10.1161/01.cir.82.5.1730

    • Search Google Scholar
    • Export Citation
  • 37.

    Mooren FC, Blöming D, Lechtermann A, Lerch MM, Völker K. Lymphocyte apoptosis after exhaustive and moderate exercise. J Appl Physiol. 2002;93(1):147-153. doi:10.1152/japplphysiol.01262.2001

    • Search Google Scholar
    • Export Citation
  • 38.

    Domanjko Petrič A, Lukman T, Verk B, Nemec Svete A. Systemic inflammation in dogs with advanced-stage heart failure. Acta Vet Scand. 2018;60(1):20. doi:10.1186/s13028-018-0372-x

    • Search Google Scholar
    • Export Citation
  • 39.

    Hamilton-Elliott J, Ambrose E, Christley R, Dukes-McEwan J. White blood cell differentials in dogs with congestive heart failure (CHF) in comparison to those in dogs without cardiac disease. J Small Anim Pract. 2018;59(6):364-372. doi:10.1111/jsap.12809

    • Search Google Scholar
    • Export Citation
  • 40.

    Tanaka R, Murota A, Nagashima Y, Yamane Y. Changes in platelet life span in dogs with mitral valve regurgitation. J Vet Intern Med. 2002;16(4):446-451. doi:10.1892/0891-6640(2002)016<0446:ciplsi>2.3.co;2

    • Search Google Scholar
    • Export Citation
  • 41.

    Tarnow I, Falk T, Tidholm A, et al. Hemostatic biomarkers in dogs with chronic congestive heart failure. J Vet Intern Med. 2007;21(3):451-457. doi:10.1892/0891-6640(2007)21[451:hbidwc]2.0.co;2

    • Search Google Scholar
    • Export Citation
  • 42.

    Ezekowitz JA, O’Meara E, McDonald MA, et al. 2017 comprehensive update of the Canadian cardiovascular society guidelines for the management of heart failure. Can J Cardiol. 2017;33(11):1342-1433. doi:10.1016/j.cjca.2017.08.022

    • Search Google Scholar
    • Export Citation
  • 43.

    Eshaghian S, Horwich TB, Fonarow GC. Relation of loop diuretic dose to mortality in advanced heart failure. Am J Cardiol. 2006;97(12):1759-1764. doi:10.1016/j.amjcard.2005.12.072

    • Search Google Scholar
    • Export Citation
  • 44.

    Mielniczuk LM, Tsang SW, Desai AS, et al. The association between high-dose diuretics and clinical stability in ambulatory chronic heart failure patients. J Card Fail. 2008;14(5):388-393. doi:10.1016/j.cardfail.2008.01.015

    • Search Google Scholar
    • Export Citation
  • 45.

    Cho JH, Cho HJ, Lee HY, et al. Neutrophil-lymphocyte ratio in patients with acute heart failure predicts in-hospital and long-term mortality. J Clin Med. 2020;9(2):557. doi:10.3390/jcm9020557

    • Search Google Scholar
    • Export Citation
  • 46.

    Siloşi CA, Siloşi I, Pădureanu V, et al. Sepsis and identification of reliable biomarkers for postoperative period prognosis. Rom J Morphol Embryol. 2018;59(1):77-91.

    • Search Google Scholar
    • Export Citation
  • 47.

    Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy. 2021;122(7):474-488. doi:10.4149/BLL_2021_078

    • Search Google Scholar
    • Export Citation
  • 48.

    Abo T, Kawamura T. Immunomodulation by the autonomic nervous system: therapeutic approach for cancer, collagen diseases, and inflammatory bowel diseases. Ther Apher. 2002;6(5):348-357. doi:10.1046/j.1526-0968.2002.00452.x

    • Search Google Scholar
    • Export Citation
  • 49.

    Pedersen HD, Häggström J, Falk T, et al. Auscultation in mild mitral regurgitation in dogs: observer variation, effects of physical maneuvers, and agreement with color Doppler echocardiography and phonocardiography. J Vet Intern Med. 1999;13(1):56-64. doi:10.1111/j.1939-1676.1999.tb02166.x

    • Search Google Scholar
    • Export Citation
  • 50.

    Häggström J, Hansson K, Kvart C, Swenson L. Chronic valvular disease in the Cavalier King Charles Spaniel in Sweden. Vet Rec. 1992;131(24):549-553.

    • Search Google Scholar
    • Export Citation

Advertisement