Dexmedetomidine decreases the 50% effective dose (ED50) of intravenous propofol required to prevent tracheal intubation response in Beagles

Xiaona LiDepartment of Anesthesiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China

Search for other papers by Xiaona Li in
Current site
Google Scholar
PubMed
Close
 MD
,
Zhihui YeDepartment of Anesthesiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China

Search for other papers by Zhihui Ye in
Current site
Google Scholar
PubMed
Close
 MD
,
Mengxue CuiDepartment of Anesthesiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China

Search for other papers by Mengxue Cui in
Current site
Google Scholar
PubMed
Close
 MD
,
An HuDepartment of Anesthesiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China

Search for other papers by An Hu in
Current site
Google Scholar
PubMed
Close
 MD
,
Xiangyu LiDepartment of Anesthesiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China

Search for other papers by Xiangyu Li in
Current site
Google Scholar
PubMed
Close
 MD
,
Qicheng ChenDepartment of Anesthesiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China

Search for other papers by Qicheng Chen in
Current site
Google Scholar
PubMed
Close
 MD
,
GaoFeng ZhaoDepartment of Anesthesiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China

Search for other papers by GaoFeng Zhao in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Fei YeDepartment of Anesthesiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China

Search for other papers by Fei Ye in
Current site
Google Scholar
PubMed
Close
 PhD
View More View Less

Abstract

OBJECTIVE

To determine the 50% effective dose (ED50) of intravenous propofol required for successfully preventing tracheal intubation response in Beagles co-induced with dexmedetomidine.

ANIMALS

36 adult male Beagles

PROCEDURES

The dogs were randomly assigned to either group D1, group D2, or group C (received 1 µg/kg, 2 µg/kg dexmedetomidine intravenously, or the same amount of normal saline as dexmedetomidine, 10 mL). The first dog in each group received 6 mg/kg of propofol for induction. The pump speed of propofol was 600 mL/h. The dosage varied with increments or decrements of 0.5 mg/kg based on the Dixon up-and-down method. The duration of eye-opening after propofol administration was recorded. Changes in heart rate (HR) and respiratory rate (RR) were recorded at 5 timepoints: after entering the operation room and prior to propofol administration (T1), 1 and 3 min after propofol administration (T2 and T3), 3 and 5 min after intubation (T4 and T5).

RESULTS

The required ED50 of propofol that prevented tracheal intubation response in D1, D2, and C groups were 6.4 mg/kg (95% CI, 6.1 to 6.7 mg/kg), 5.8 mg/kg (95% CI, 5.67 to 6 mg/kg), and 8.3 mg/kg (95% CI, 8 to 8.5 mg/kg), respectively. The recovery time of group D2 was significantly longer than that of groups D1 and C (P < .05). The differences in HR among the 3 groups were significant from T2 up to T5 timepoint (P < .05). The differences in RR among the 3 groups were significant at T2 and T3 timepoints (P < .05).

CLINICAL RELEVANCE

Dexmedetomidine pre-injection reduces the amount of propofol required for endotracheal intubation response in Beagles, thereby reducing the respiratory inhibition induced by propofol.

Abstract

OBJECTIVE

To determine the 50% effective dose (ED50) of intravenous propofol required for successfully preventing tracheal intubation response in Beagles co-induced with dexmedetomidine.

ANIMALS

36 adult male Beagles

PROCEDURES

The dogs were randomly assigned to either group D1, group D2, or group C (received 1 µg/kg, 2 µg/kg dexmedetomidine intravenously, or the same amount of normal saline as dexmedetomidine, 10 mL). The first dog in each group received 6 mg/kg of propofol for induction. The pump speed of propofol was 600 mL/h. The dosage varied with increments or decrements of 0.5 mg/kg based on the Dixon up-and-down method. The duration of eye-opening after propofol administration was recorded. Changes in heart rate (HR) and respiratory rate (RR) were recorded at 5 timepoints: after entering the operation room and prior to propofol administration (T1), 1 and 3 min after propofol administration (T2 and T3), 3 and 5 min after intubation (T4 and T5).

RESULTS

The required ED50 of propofol that prevented tracheal intubation response in D1, D2, and C groups were 6.4 mg/kg (95% CI, 6.1 to 6.7 mg/kg), 5.8 mg/kg (95% CI, 5.67 to 6 mg/kg), and 8.3 mg/kg (95% CI, 8 to 8.5 mg/kg), respectively. The recovery time of group D2 was significantly longer than that of groups D1 and C (P < .05). The differences in HR among the 3 groups were significant from T2 up to T5 timepoint (P < .05). The differences in RR among the 3 groups were significant at T2 and T3 timepoints (P < .05).

CLINICAL RELEVANCE

Dexmedetomidine pre-injection reduces the amount of propofol required for endotracheal intubation response in Beagles, thereby reducing the respiratory inhibition induced by propofol.

Contributor Notes

Corresponding author: Dr. Ye (yepainclinic@163.com)
  • 1.

    Afonso J, Reis F. Dexmedetomidine: current role in anesthesia and intensive care. Rev Bras Anestesiol. 2012;62(1):118133. doi:10.1016/S0034-7094(12)70110-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tasbihgou SR, Barends CRM, Absalom AR. The role of dexmedetomidine in neurosurgery. Best Pract Res Clin Anaesthesiol. 2021;35(2):221229. doi:10.1016/j.bpa.2020.10.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Wang G, Niu J, Li Z, Lv H, Cai H. The efficacy and safety of dexmedetomidine in cardiac surgery patients: a systematic review and meta-analysis. PLoS One. 2018;13(9):e0202620. doi:10.1371/journal.pone.0202620

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Devlin JW, Skrobik Y, Gélinas C, et al Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825e873. doi:10.1097/CCM.0000000000003299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Su F, Gastonguay MR, Nicolson SC, DiLiberto M, Ocampo-Pellend A, Zuppa AF. Dexmedetomidine pharmacology in neonates and infants after open heart surgery. Anesth Analg. 2016;122(5):15561566. doi:10.1213/ANE.0000000000000869

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Li A, Yuen VM, Goulay-Dufaÿ S, et al Pharmacokinetic and pharmacodynamic study of intranasal and intravenous dexmedetomidine. Br J Anaesth. 2018;120(5):960968. doi:10.1016/j.bja.2017.11.100

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kogan M, McGuire M, Riley J. Deep brain stimulation for Parkinson disease. Neurosurg Clin N Am. 2019;30(2):137146. doi:10.1016/j.nec.2019.01.001

  • 8.

    Formolo DA, Gaspar JM, Melo HM, et al Deep brain stimulation for obesity: a review and future directions. Front Neurosci. 2019;13:323. doi:10.3389/fnins.2019.00323

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Tierney TS. Deep brain stimulation foundations and future trends. Front Biosci. 2018;23(1):4586. doi:10.2741/4586

  • 10.

    Husch A, Petersen MV, Gemmar P, Goncalves J, Sunde N, Hertel F. Post-operative deep brain stimulation assessment: automatic data integration and report generation. Brain Stimul. 2018;11(4):863866. doi:10.1016/j.brs.2018.01.031

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Paramasivan A, Lopez-Olivo MA, Foong TW, et al Intrathecal dexmedetomidine and postoperative pain: a systematic review and meta-analysis of randomized controlled trials. Eur J Pain. 2020;24(7):12151227. doi:10.1002/ejp.1575

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Xia F, Chang X, Zhang Y, Wang L, Xiao F. The effect of intrathecal dexmedetomidine on the dose requirement of hyperbaric bupivacaine in spinal anaesthesia for caesarean section: a prospective, double-blinded, randomized study. BMC Anesthesiol. 2018;18(1):74 doi:10.1186/s12871-018-0528-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Prontera A, Baroni S, Marudi A, et al Awake craniotomy anesthetic management using dexmedetomidine, propofol, and remifentanil. Drug Des Devel Ther. 2017;11:593598. doi:10.2147/DDDT.S124736

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Iizuka T, Masui K, Miyabe-Nishiwaki T, Kanazawa H, Nishimura R. Propofol-fentanyl interaction in Beagles—apnea, response to mechanical ventilation, endotracheal tube, and tetanic stimulation. Res Vet Sci. 2017;115:3442. doi:10.1016/j.rvsc.2017.01.021

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zhang Z, Chen K, Ni H, Zhang X, Fan H. Sedation of mechanically ventilated adults in intensive care unit: a network meta-analysis. Sci Rep. 2017;7:44979. doi:10.1038/srep44979

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Djaiani G, Silverton N, Fedorko L, et al Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial. Anesthesiology. 2016;124(2):362368. doi:10.1097/ALN.0000000000000951

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Viana A, Zhao C, Rosa T, et al The effect of sedating agents on drug-induced sleep endoscopy findings. Laryngoscope. 2019;129(2):506513. doi:10.1002/lary.27298

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Padiyara TV, Bansal S, Jain D, Arora S, Gandhi K. Dexmedetomidine versus propofol at different sedation depths during drug-induced sleep endoscopy: a randomized trial. Laryngoscope. 2020;130(1):257262. doi:10.1002/lary.27903

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kuyrukluyıldız U, Binici O, Onk D, et al Comparison of dexmedetomidine and propofol used for drug-induced sleep endoscopy in patients with obstructive sleep apnea syndrome. Int J Clin Exp Med. 2015;8(4):56915698.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Yoon BW, Hong JM, Hong SL, et al A comparison of dexmedetomidine versus propofol during drug induced sleep endoscopy in sleep apnea patients. Laryngoscope. 2016;126(3):763767. doi:10.1102/lary.25801

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Capasso R, Rosa T, Tsou DYA, et al Variable findings for drug induced sleep endoscopy in obstructive sleep apnea with propofol versus dexmedetomidine. Otolaryngol Head Neck Surg. 2016;154(4):765770. doi:10.1177/0194599815625972

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Su Z, Li S, Zhou Z, et al A canine model of tracheal stenosis induced by cuffed endotracheal intubation. Sci Rep. 2017;7:45357 doi:10.1038/srep45357

  • 23.

    Yam J, Reer PJ, Bruce RD. Comparison of the up-and-down method and the fixed-dose procedure for acute oral toxicity testing. Food Chem Toxicol. 1991;29(4):259263. doi:10.1016/0278-6915(91)90023-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Dixon WJ. Staircase bioassay: the up-and-down method. Neurosci Biobehav Rev. 1991;15(1):4750. doi:10.1016/s0149-7634(05)80090-9

  • 25.

    Yoo JY, Kwak HJ, Kim YB, et al The effect of dexmedetomidine pretreatment on the median effective bolus dose of propofol for facilitating laryngeal mask airway insertion. J Anesth. 2017;31(1):1117. doi:0.1007/s00540-016-2245-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Jang YE, Kim YC, Yoon HK, et al A randomized controlled trial of the effect of preoperative dexmedetomidine on the half maximal effective concentration of propofol for successful i-gel insertion without muscle relaxants. J Anesth. 2015;29(3):338345. doi:10.1007/s00540-014-1949-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Choi JB, Kwak HJ, Lee KC, et al Comparison of remifentanil EC50 for facilitating i-gel and laryngeal mask airway insertion with propofol anesthesia. J Anesth. 2016;30(3):377383. doi:10.1007/s00540-015-2133-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Liu SH, Tian M. Factors affecting recovery from anaesthesia with propofol-remifentanil target-controlled infusion in laparoscopic surgery. J Int Med Res. 2017;45(3):10071014. doi:10.1177/0300060517705539

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Li Z, Chen X, Meng J, et al ED50 and recovery times after propofol in rats with graded cirrhosis. Anesth Analg. 2012;114(1):117121. doi:10.1213/ANE.0b013e3182367a24

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Stäuble CG, Stäuble RB, Schaller SJ, Unterbuchner C, Fink H, Blobner M. Effects of single-shot and steady-state propofol anaesthesia on rocuronium dose-response relationship: a randomised trial. Acta Anaesthesiol Scand. 2015;59(7):902911. doi:10.1111/aas.12523

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hunt JR, Slingsby LS, Murrell JC. The effects of an intravenous bolus of dexmedetomidine following extubation in a mixed population of dogs undergoing general anaesthesia and surgery. Vet J. 2014;200(1):133139. doi:10.1016/j.tvjl.2014.01.015

    • Search Google Scholar
    • Export Citation
  • 32.

    Gómez-Villamandos RJ, Palacios C, Benitez A, et al Dexmedetomidine or medetomidine premedication before propofol-desflurane anaesthesia in dogs. J Vet Pharmacol Ther. 2006;29(3):157163. doi:10.1111/j.1365-2885.2006.00732.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Xue FS, Zhang GH, Sun HT, et al A comparative study of hemodynamic responses to orotracheal intubation with fiberoptic bronchoscope and laryngoscope in children. Paediatr Anaesth. 2006;16(7):743747. doi:10.1111/j.1460–9592.2006.01851.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Adachi YU, Takamatsu I, Watanabe K, et al Evaluation of the cardiovascular responses to fiberoptic orotracheal intubation with television monitoring: comparison with conventional direct laryngoscopy. J Clin Anesth. 2000;12(7):503508. doi:10.1016/s0952-8180(00)00196-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Choyce A, Avidan MS, Harvey A, et al The cardiovascular response to insertion of the intubating laryngeal mask airway. Anaesthesia. 2002;57(4):330333. doi:10.1046/j.1365-2044.2002.02463.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Mason KP, Lerman J. Dexmedetomidine in children. Anesth Analg. 2011;113(5):11291142. doi:10.1213/ANE.0b013e31822b8629

  • 37.

    Shah PJ, Dubey K, Sahare K, et al Intravenous dexmedetomidine versus propofol for intraoperative moderate sedation during spinal anesthesia: a comparative study. J Anaesthesiol Clin Pharmacol. 2016;32(2):245249. doi:10.4103/0970-9185.168172

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Diao HX, Jiang S, Gao PY, et al Comparison of the effects of propofol and emulsified isoflurane alone or combined with dexmedetomidine on induction of anesthesia in dogs. Vet Anaesth Analg. 2016;43(2):145152. doi:10.1111/vaa.12287

    • Search Google Scholar
    • Export Citation
  • 39.

    Pan SY, Liu G, Lin JH, et al Efficacy and safety of dexmedetomidine premedication in balanced anesthesia: a systematic review and meta-analysis in dogs. Animals (Basel). 2021;11(11):3254. doi:10.3390/ani11113254

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Weerink MAS, Struys MMRF, Hannivoort LN, et al Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893913. doi:10.1007/s40262-017-0507-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Granholm M, McKusick BC, Westerholm FC, et al Evaluation of the clinical efficacy and safety of intramuscular and intravenous doses of dexmedetomidine and medetomidine in dogs and their reversal with atipamezole. Vet Rec. 2007;160(26):891897. doi:10.1136/vr.160.26.891

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Congdon JM, Marquez M, Niyom S, et al Evaluation of the sedative and cardiovascular effects of intramuscular administration of dexmedetomidine with and without concurrent atropine administration in dogs. J Am Vet Med Assoc. 2011;239(1):8189. doi:10.2460/javma.239.1.81

    • PubMed
    • Search Google Scholar
    • Export Citation

Advertisement