• 1.

    Gross KLY et al. Macronutrients In: Hand MS, Thatcher CD, Remillard RL, Roudebush P, Novotny BJ, eds. Small Animal Clinical Nutrition. 5th ed. Mark Morris Institute; 2010:49105.

    • Search Google Scholar
    • Export Citation
  • 2.

    Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:13321345. doi:10.1016/j.cell.2016.05.041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lewis LD, Magerkurth JH, Roudebush P, Morris ML Jr, Mitchell EE, Teeter SM. Stool characteristics, gastrointestinal transit time and nutrient digestibility in dogs fed different fiber sources. J Nutr. 1994;124:2716S2718S. doi:10.1093/jn/124.suppl_12.2716S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bueno L, Praddaude F, Fioramonti J, Ruckebusch Y. Effect of dietary fiber on gastrointestinal motility and jejunal transit time in dogs. Gastroenterology. 1981;80:701707. doi:10.1016/0016-5085(81)90129-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Roberfroid M. Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr. 1993;33:103148. doi:10.1080/10408399309527616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Silvio J, Harmon DL, Gross KL, McLeod KR. Influence of fiber fermentability on nutrient digestion in the dog. Nutrition. 2000;16:289295. doi:10.1016/S0899-9007(99)00298-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lovegrove A, Edwards CH, De Noni I, et al. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr. 2017;57:237253. doi:10.1080/10408398.2014.939263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Jiménez-Escrig A, Sánchez-Muniz FJ. Dietary fibre from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr Res. 2000;20:585598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Dikeman CL, Fahey GC. Viscosity as related to dietary fiber: a review. Crit Rev Food Sci Nutr. 2006;46:649663. doi:10.1080/10408390500511862

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567590. doi:10.1152/physrev.1990.70.2.567

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kronfeld DS, Hammel EP, Ramberg CF Jr, Dunlap HL Jr. Hematological and metabolic responses to training in racing sled dogs fed diets containing medium, low, or zero carbohydrate. Am J Clin Nutr. 1977;30:419430. doi:10.1093/ajcn/30.3.419

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Burrows CF, Kronfeld DS, Banta CA, Merritt AM. Effects of fiber on digestibility and transit time in dogs. J Nutr. 1982;112:17261732. doi:10.1093/jn/112.9.1726

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Fernandez R, Phillips SF. Components of fiber impair iron absorption in the dog. Am J Clin Nutr. 1982;35:107112. doi:10.1093/ajcn/35.1.107

  • 14.

    Beynen AC, Kappert HJ, Yu S. Dietary lactulose decreases apparent nitrogen absorption and increases apparent calcium and magnesium absorption in healthy dogs. J Anim Physiol Anim Nutr (Berl). 2001;85:6772. doi:10.1046/j.1439-0396.2001.00301.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wedekind KJ, Beyer S, Titgemeyer E. Bioavailability of phosphorus is affected by certain fiber sources (abstract). FASEB J. 1996;10:A524.

    • Search Google Scholar
    • Export Citation
  • 16.

    Wedekind KJ, Walker L, Beyer S, et al. Bioavailability of iron is affected by certain fiber sources in chicks and puppies (abstract). In: Proceedings. Ninth International Symposium on Trace Elements in Man and Animals (T EMA-9), Banff, Alberta, Canada. 1996a:A20.

    • Search Google Scholar
    • Export Citation
  • 17.

    Wedekind KJ, Walker L, Hancock J, et al. Bioavailability of zinc and calcium is affected by certain fiber sources (abstract). FASEB J. 1995;9:A450.

    • Search Google Scholar
    • Export Citation
  • 18.

    Czarnecki-Maulden GP, Binder SF, Saylock MJ. Chicory Root, a Source of Soluble Fiber, Increases Apparent Calcium Digestibility in Dogs. Nestlé Purina Product Technology Center, Nestec LTD.

  • 19.

    Leib MS. Treatment of chronic idiopathic large-bowel diarrhea in dogs with a highly digestible diet and soluble fiber: a retrospective review of 37 cases. J Vet Intern Med. 2000;14:2732. doi:10.1111/j.1939-1676.2000.tb01495.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Frantz NZ. PM, Yamka RM. Novel food with mixed soluble fibre promotes improved stool scores in cats with chronic diarrhoea. AAVN Symposium J Anim Physiol Anim Nutr (Berl), 2020;104(1):406.

  • 21.

    Frantz NZ. PM, Yamka RM. Novel food with mixed soluble fibre promotes quicker resolution of acute diarrhoea in shelter kittens. AAVN Symposium: J Anim Physiol Anim Nutr (Berl), 2020;104(1):406.

  • 22.

    Frantz NZ. PM, Yamka RM. Novel soluble fibre food promotes stool improvements and resolution of acute diarrhoea in shelter puppies. AAVN Symposium: J Anim Physiol Anim Nutr (Berl), 2020;104(1):406.

  • 23.

    de-Oliveira LD, Takakura FS, Kienzle E, et al. Fibre analysis and fibre digestibility in pet foods: a comparison of total dietary fibre, neutral and acid detergent fibre and crude fibre. J Anim Physiol Anim Nutr (Berl). 2012;96:895906. doi:10.1111/j.1439-0396.2011.01203.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Fahey GC Jr, Novotny L, Layton B, Mertens DR. Critical factors in determining fiber content of feeds and foods and their ingredients. J AOAC Int. 2019;102:5262. doi:10.5740/jaoacint.18-0067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Prosky L, Asp NG, Furda I, DeVries JW, Schweizer TF, Harland BF. Determination of total dietary fiber in foods and food products: collaborative study. J Assoc Off Anal Chem. 1985;68:677679. doi:10.1093/jaoac/68.4.677

    • Search Google Scholar
    • Export Citation
  • 26

    U.S. Department of Agriculture. Agricultural Research Service. FoodData Central, 2019. Accessed July 1, 2022. https://fdc.nal.usda.gov/fdc-app.html#/

  • 27.

    Muller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients. 2018;10:275. doi:10.3390/nu10030275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Fahey GC, Jr., Merchen NR, Corbin JE, Hamilton AK, Serbe KA, Hirakawa DA. Dietary fiber for dogs: II. Iso-total dietary fiber (TDF) additions of divergent fiber sources to dog diets and their effects on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J Anim Sci. 1990;68:42294235. doi:10.2527/1990.68124229x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Fahey GC Jr, Merchen NR, Corbin JE, et al. Dietary fiber for dogs: I. Effects of graded levels of dietary beet pulp on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J Anim Sci. 1990;68:42214228. doi:10.2527/1990.68124221x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Lin HC, Zhao XT, Chu AW, Lin YP, Wang L. Fiber-supplemented enteral formula slows intestinal transit by intensifying inhibitory feedback from the distal gut. Am J Clin Nutr. 1997;65:18401844. doi:10.1093/ajcn/65.6.1840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Reppas C, Meyer JH, Sirois PJ, Dressman JB. Effect of hydroxypropylmethylcellulose on gastrointestinal transit and luminal viscosity in dogs. Gastroenterology. 1991;100:12171223. doi:10.1016/0016-5085(91)70007-K

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Malagelada JR, Carter SE, Brown ML, Carlson GL. Radiolabeled fiber: a physiologic marker for gastric emptying and intestinal transit of solids. Dig Dis Sci. 1980;25:8187. doi:10.1007/BF01308301

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Russell J, Bass P. Canine gastric emptying of fiber meals: influence of meal viscosity and antroduodenal motility. Am J Physiol. 1985;249:G662G667. doi:10.1152/ajpgi.1985.249.6.G662

    • Search Google Scholar
    • Export Citation
  • 34.

    Meyer JH, Gu YG, Jehn D, Taylor IL. Intragastric vs intraintestinal viscous polymers and glucose tolerance after liquid meals of glucose. Am J Clin Nutr. 1988;48:260266. doi:10.1093/ajcn/48.2.260

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Burger DM, Wiestner T, Montavon PM, et al. Long-term measurement of gastric motility using passive telemetry and effect of guar and cellulose as food additives in dogs. J Vet Med A Physiol Pathol Clin Med. 2006;53:8596. doi:10.1111/j.1439-0442.2006.00788.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Ehrlein HJ, Prove J. Effect of viscosity of test meals on gastric emptying in dogs. Q J Exp Physiol. 1982;67:419425. doi:10.1113/expphysiol.1982.sp002657

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Prove J, Ehrlein HJ. Motor function of gastric antrum and pylorus for evacuation of low and high viscosity meals in dogs. Gut. 1982;23:150156. doi:10.1136/gut.23.2.150

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Loureiro BA, Monti M, Pedreira RS, et al. Beet pulp intake and hairball faecal excretion in mixed-breed shorthaired cats. J Anim Physiol Anim Nutr (Berl). 2017;101(suppl 1):3136. doi:10.1111/jpn.12745

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Ashraf W, Lof J, Jin G, Quigley EM. Comparative effects of intraduodenal psyllium and senna on canine small bowel motility. Aliment Pharmacol Ther. 1994;8:329336. doi:10.1111/j.1365-2036.1994.tb00296.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Chandler ML, Guilford G, Lawoko CR. Radiopaque markers to evaluate gastric emptying and small intestinal transit time in healthy cats. J Vet Intern Med. 1997;11:361-364. doi:10.1111/j.1939-1676.1997.tb00481.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Chandler ML, Guilford WG, Lawoko CR, Whittem T. Gastric emptying and intestinal transit times of radiopaque markers in cats fed a high-fiber diet with and without low-dose intravenous diazepam. Vet Radiol Ultrasound. 1999;40:38. doi:10.1111/j.1740-8261.1999.tb01831.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Papasouliotis K, Muir P, Gruffydd-Jones TJ, Cripps PJ, Blaxter AC. The effect of short-term dietary fibre administration on oro-caecal transit time in dogs. Diabetologia. 1993;36:207211. doi:10.1007/BF00399951

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hall JA, Twedt DC. Gastric motility in dogs: 1. Normal gastric function. Compend Contin Educ Pract Vet. 1989;10:12821285.

  • 44.

    Schwartz SE, Levine RA, Singh A, Scheidecker JR, Track NS. Sustained pectin ingestion delays gastric emptying. Gastroenterology. 1982;83(4):812817.

    • Search Google Scholar
    • Export Citation
  • 45.

    Kamath PS, Hoepfner MT, Phillips SF. Short-chain fatty acids stimulate motility of the canine ileum. Am J Physiol. 1987;253:G427G433. doi:10.1152/ajpgi.1987.253.4.G427

    • Search Google Scholar
    • Export Citation
  • 46.

    Rondeau MP, Meltzer K, Michel KE, McManus CM, Washabau RJ. Short chain fatty acids stimulate feline colonic smooth muscle contraction. J Feline Med Surg. 2003;5:167173. doi:10.1016/S1098-612X(03)00002-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Kirwan WO, Smith AN, Mitchell WD, Falconer JD, Eastwood MA. Bile acids and colonic motility in the rabbit and the human. Gut. 1975;16:894902. doi:10.1136/gut.16.11.894

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Fahey GC Jr, Merchen NR, Corbin JE, et al. Dietary fiber for dogs: III. Effects of beet pulp and oat fiber additions to dog diets on nutrient intake, digestibility, metabolizable energy, and digesta mean retention time. J Anim Sci. 1992;70:11691174. doi:10.2527/1992.7041169x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Jackson MI, Jewell DE. Balance of saccharolysis and proteolysis underpins improvements in stool quality induced by adding a fiber bundle containing bound polyphenols to either hydrolyzed meat or grain-rich foods. Gut Microbes. 2019;10:298320. doi:10.1080/19490976.2018.1526580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Diez M, Hornick JL, Baldwin P, Van Eenaeme C, Istasse L. The influence of sugar-beet fibre, guar gum and inulin on nutrient digestibility, water consumption and plasma metabolites in healthy Beagle dogs. Res Vet Sci. 1998;64:9196. doi:10.1016/S0034-5288(98)90001-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Brambillasca S, Britos A, Deluca C, Fraga M, Cajarville C. Addition of citrus pulp and apple pomace in diets for dogs: influence on fermentation kinetics, digestion, faecal characteristics and bacterial populations. Arch Anim Nutr. 2013;67:492502. doi:10.1080/1745039X.2013.857079

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Propst EL, Flickinger EA, Bauer LL, Merchen NR, Fahey GC Jr. A dose-response experiment evaluating the effects of oligofructose and inulin on nutrient digestibility, stool quality, and fecal protein catabolites in healthy adult dogs. J Anim Sci. 2003;81:30573066. doi:10.2527/2003.81123057x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Czarnecki-Maulden GP, Patil A. Effect of Chicory on Fecal Quality in Dogs and Cats. Nestle Purina PetCare Research. 2004.

  • 54.

    Dimski DS, Buffington CA. Dietary fiber in small animal therapeutics. J Am Vet Med Assoc. 1991;199:11421146.

  • 55.

    Grundy MM, Edwards CH, Mackie AR, Gidley MJ, Butterworth PJ, Ellis PR. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br J Nutr. 2016;116:816833. doi:10.1017/S0007114516002610

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Jewell DE, Toll PW, Azain MJ, Lewis RD, Edwards GL. Fiber but not conjugated linoleic acid influences adiposity in dogs. Vet Ther. 2006;7:7885.

    • Search Google Scholar
    • Export Citation
  • 57.

    Jewell DE, Toll PW, Novotny BJ. Satiety reduces adiposity in dogs. Vet Ther. 2000;1:1723.

  • 58.

    Butterwick RF, Markwell PJ, Thorne CJ. Effect of level and source of dietary fiber on food intake in the dog. J Nutr. 1994;124:2695S2700S. doi:10.1093/jn/124.suppl_12.2695S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Jackson JR, Laflamme DP, Owens SF. Effects of dietary fiber content on satiety in dogs. Vet Clin Nutr. 1997;4:130134.

  • 60.

    Weber M, Bissot T, Servet E, Sergheraert R, Biourge V, German AJ. A high-protein, high-fiber diet designed for weight loss improves satiety in dogs. J Vet Intern Med. 2007;21:12031208. doi:10.1111/j.1939-1676.2007.tb01939.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Butterwick RF, Markwell PJ. Effect of amount and type of dietary fiber on food intake in energy-restricted dogs. Am J Vet Res. 1997;58:272276.

    • Search Google Scholar
    • Export Citation
  • 62.

    Prola L, Dobenecker B, Kienzle E. Interaction between dietary cellulose content and food intake in cats. J Nutr. 2006;136:1988S1990S. doi:10.1093/jn/136.7.1988S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Fekete S, Hullar I, Andrasofszky E, Rigó Z, Berkényi T. Reduction of the energy density of cat foods by increasing their fibre content with a view to nutrients’ digestibility. J Anim Physiol Anim Nutr (Berl). 2001;85:200204. doi:10.1046/j.1439-0396.2001.00332.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Diez M, Nguyen P, Jeusette I, Devois C, Istasse L, Biourge V. Weight loss in obese dogs: evaluation of a high-protein, low-carbohydrate diet. J Nutr. 2002;132:1685S1687S. doi:10.1093/jn/132.6.1685S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Brambillasca S, Purtscher F, Britos A, Repetto JL, Cajarville C. Digestibility, fecal characteristics, and plasma glucose and urea in dogs fed a commercial dog food once or three times daily. Can Vet J. 2010;51:190194.

    • Search Google Scholar
    • Export Citation
  • 66.

    Donadelli RA, Aldrich CG. The effects on nutrient utilization and stool quality of Beagle dogs fed diets with beet pulp, cellulose, and Miscanthus grass. J Anim Sci. 2019;97:41344139. doi:10.1093/jas/skz265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Castrillo C, Vicente F, Guada JA. The effect of crude fibre on apparent digestibility and digestible energy content of extruded dog foods. J Anim Physiol Anim Nutr (Berl). 2001;85:231236. doi:10.1046/j.1439-0396.2001.00329.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Flickinger EA, Wolf BW, Garleb KA, et al. Glucose-based oligosaccharides exhibit different in vitro fermentation patterns and affect in vivo apparent nutrient digestibility and microbial populations in dogs. J Nutr. 2000;130:12671273. doi:10.1093/jn/130.5.1267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Ko KS, Fascetti AJ. Dietary beet pulp decreases taurine status in dogs fed low protein diet. J Anim Sci Technol. 2016;58:29. doi:10.1186/s40781-016-0112-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491502. doi:10.1038/nrgastro.2017.75

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    International Scientific Association of Probiotics and Prebiotics. Accessed January 7, 2022. https://isappscience.org

  • 72.

    Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5:14171435. doi:10.3390/nu5041417

  • 73.

    Maria APJ, Ayane L, Putarov TC, et al. The effect of age and carbohydrate and protein sources on digestibility, fecal microbiota, fermentation products, fecal IgA, and immunological blood parameters in dogs. J Anim Sci. 2017;95:24522466.

    • Search Google Scholar
    • Export Citation
  • 74.

    Wernimont SM, Paetau-Robinson I, Jackson MI, Gross KL. Bacterial metabolism of polyphenol-rich fibers in a true carnivore, Felis catus. FASEB J. 2019;33:723.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Verbrugghe A, Hesta M, Gommeren K, et al. Oligofructose and inulin modulate glucose and amino acid metabolism through propionate production in normal-weight and obese cats. Br J Nutr. 2009;102:694702. doi:10.1017/S0007114509288982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Verbrugghe A, Janssens GP, Meininger E, et al. Intestinal fermentation modulates postprandial acylcarnitine profile and nitrogen metabolism in a true carnivore: the domestic cat (Felis catus). Br J Nutr. 2010;104:972979. doi:10.1017/S0007114510001558

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Wambacq W, Rybachuk G, Jeusette I, et al. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet. BMC Vet Res. 2016;12:130. doi:10.1186/s12917-016-0752-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Grieshop CM, Flickinger EA, Bruce KJ, Patil AR, Czarnecki-Maulden GL, Fahey GC Jr. Gastrointestinal and immunological responses of senior dogs to chicory and mannan-oligosaccharides. Arch Anim Nutr. 2004;58:483493. doi:10.1080/00039420400019977

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Jewell D, Jackson M, Hall J, Badri D. Feeding microbiome-targeting ingredients increases fecal butyrate, plant-origin antioxidants, and anti-inflammatory compounds in dogs. Curr Dev Nutr. 2020;4:689. doi:10.1093/cdn/nzaa050_012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Jewell D, Jackson M, Hall J, Badri D. Feeding microbiome-targeting ingredients increases fecal plant-origin antioxidants and anti inflammatory compounds, and decreases branched-chained amino acids in cats. Curr Dev Nutr. 2020;4:690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Herstad KMV, Røonning HT, Bakke AM, Moe L, Skancke E. Changes in the faecal bile acid profile in dogs fed dry food vs high content of beef: a pilot study. Acta Vet Scand. 2018;60:29. doi:10.1186/s13028-018-0383-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Alexander C, Cross TL, Devendran S, et al. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br J Nutr. 2018;120:711720. doi:10.1017/S0007114518001952

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Gilor C, Graves TK, Gilor S, Ridge TK, Weng H-Y, Dossin O. The incretin effect in cats: comparison between oral glucose, lipids, and amino acids. Domest Anim Endocrinol. 2011;40:205212. doi:10.1016/j.domaniend.2011.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Nguyen P, Dumon H, Biourge V, Pouteau E. Glycemic and insulinemic responses after ingestion of commercial foods in healthy dogs: influence of food composition. J Nutr. 1998;128:2654S2658S. doi:10.1093/jn/128.12.2654S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Massimino SP, McBurney MI, Field CJ, et al. Fermentable dietary fiber increases GLP-1 secretion and improves glucose homeostasis despite increased intestinal glucose transport capacity in healthy dogs. J Nutr. 1998;128:17861793. doi:10.1093/jn/128.10.1786

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Nelson RW, Ihle SL, Lewis LD, et al. Effects of dietary fiber supplementation on glycemic control in dogs with alloxan-induced diabetes mellitus. Am J Vet Res. 1991;52:20602066.

    • Search Google Scholar
    • Export Citation
  • 88.

    Nelson R, Briggs C, Scott-Moncrieff JC, Kirk C. Effect of dietary fiber type and quantity on control of glycemia in diabetic dogs. ACVIM Forum. J Vet Intern Med. 2000;14(3):376.

    • Search Google Scholar
    • Export Citation
  • 89.

    Graham PA, Maskell IE, Nash AS. Canned high fiber diet and postprandial glycemia in dogs with naturally occurring diabetes mellitus. J Nutr. 1994;124:2712S2715S. doi:10.1093/jn/124.suppl_12.2712S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Graham PA, Maskell E, Rawlings JM, Nash AS, Markwell PJ. Influence of a high fibre diet on glycaemic control and quality of life in dogs with diabetes mellitus. J Small Anim Pract. 2002;43:6773. doi:10.1111/j.1748-5827.2002.tb00031.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Nelson RW, Scott-Moncrieff JC, Feldman EC, et al. Effect of dietary insoluble fiber on control of glycemia in cats with naturally acquired diabetes mellitus. J Am Vet Med Assoc. 2000;216:10821088. doi:10.2460/javma.2000.216.1082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Bennett N, Greco DS, Peterson ME, Kirk C, Mathes M, Fettman MJ. Comparison of a low carbohydrate-low fiber diet and a moderate carbohydrate-high fiber diet in the management of feline diabetes mellitus. J Feline Med Surg. 2006;8:7384. doi:10.1016/j.jfms.2005.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Teshima E, Brunetto MA, Vasconcellos RS, et al. Nutrient digestibility, but not mineral absorption, is age-dependent in cats. J Anim Physiol Anim Nutr (Berl). 2010;94:e251e258. doi:10.1111/j.1439-0396.2009.00964.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Barrette D. Feeding older dogs and cats. Can Vet J. 1990;31:784785.

  • 95.

    Markham RW, Hodgkins EM. Geriatric nutrition. Vet Clin North Am Small Anim Pract. 1989;19:165185. doi:10.1016/S0195-5616(89)50012-3

  • 96.

    Swanson KS, Grieshop CM, Flickinger EA, et al. Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. J Nutr. 2002;132:980989. doi:10.1093/jn/132.5.980

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016;164:144151. doi:10.1016/j.pharmthera.2016.04.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Middelbos IS, Vester Boler BM, Qu A, White BA, Swanson KS, Fahey GC Jr. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One. 2010;5:e9768. doi:10.1371/journal.pone.0009768

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Czarnecki-Maulden, Patil AR. The effect of trial length on canine fecal microflora response to chicory ingestion. Proceedings of the Joint Nutrition Symposium; 2002.

  • 100.

    Czarnecki-Maulden GL, Russell TJ. Effect of chicory on fecal microflora in dogs fed soy-containing or soy-free diets. FASEB J. 2000;14(4):A488.

    • Search Google Scholar
    • Export Citation
  • 101.

    Fritsch D, Wernimont S, Jackson M, Badri D, Cochrane C-Y, Gross K. Select dietary fibers alter FI microbiome composition & promote fermentative metabolism in the lower gastrointestinal tract of healthy adult dogs.Curr Dev Nutr. 2019;3:nzz040.P20-044-19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Wernimont S, Fritsch D, Jackson M, Badri D, Cochrane C-Y, Gross K. Specialized dietary fibers alter microbiome composition & promote fermentative metabolism in the lower gastrointestinal tract of healthy adult cats. Curr Dev Nutr. 2019;3:nzz040.P20-045-19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Flickinger EA, Schreijen EM, Patil AR, et al. Nutrient digestibilities, microbial populations, and protein catabolites as affected by fructan supplementation of dog diets. J Anim Sci. 2003;81:20082018. doi:10.2527/2003.8182008x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Terada A, Hara H, Kato S, et al. Effect of lactosucrose (4G-beta-D-galactosylsucrose) on fecal flora and fecal putrefactive products of cats. J Vet Med Sci. 1993;55:291295. doi:10.1292/jvms.55.291

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Zentek J, Marquart B, Pietrzak T, Ballèvre O, Rochat F. Dietary effects on bifidobacteria and Clostridium perfringens in the canine intestinal tract. J Anim Physiol Anim Nutr (Berl). 2003;87:397407. doi:10.1046/j.0931-2439.2003.00451.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Chen M, Yong X, Nsor-Atindana J, Masamba KG, Ma J, Zhong F. Quantitative optimization and assessments of supplemented fructooligosaccharides in dry dog food. RSC Advances. 2016;6(111):110047110052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    Strickling JH, Harmon DL, Dawson KA, Gross KL. Evaluation of oligosaccharide addition to dog diets: influences on nutrient digestion and microbial populations. Anim Feed Sci Technol. 2000;86:205219. doi:10.1016/S0377-8401(00)00175-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Grieshop CM, Flickinger EA, Fahey GC Jr. Oral administration of arabinogalactan affects immune status and fecal microbial populations in dogs. J Nutr. 2002;132:478482. doi:10.1093/jn/132.3.478

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109.

    Lappin MR, Zug A, Hovenga C, Gagne J, Cross E. Efficacy of feeding a diet containing a high concentration of mixed fiber sources for management of acute large bowel diarrhea in dogs in shelters. J Vet Intern Med. 2022;36:488492. doi:10.1111/jvim.16360

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Rudinsky AJ, Parker VJ, Winston JA, et al. Randomized controlled trial demonstrates nutritional management is superior to metronidazole for treatment of acute colitis in dogs. J Amer Vet Med Assoc. In press.

    • Search Google Scholar
    • Export Citation
  • 111.

    Simpson JM, Maskell IE, Markwell PJ. Use of a restricted antigen diet in the management of idiopathic canine colitis. J Small Anim Pract. 1994;35:233238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Livet V, Drut A, Floch F, et al. Contribution of dietary changes to canine chronic colitis management: a retrospective study of 25 cases. ECVIM Forum, 2013. J Vet Intern Med. 2014;28:711748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    Rossi G, Cerquetella M, Gavazza A, et al. Rapid resolution of large bowel diarrhea after the administration of a combination of a high-fiber diet and a probiotic mixture in 30 dogs. Vet Sci. 2020;7:21.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114.

    Lecoindre P, Gaschen FP. Chronic idiopathic large bowel diarrhea in the dog. Vet Clin North Am Small Anim Pract. 2011;41:447456. doi:10.1016/j.cvsm.2011.02.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    Fritsch DA, Wernimont SM, Jackson MI, MacLeay JM, Gross KL. A prospective multicenter study of the efficacy of a fiber-supplemented dietary intervention in dogs with chronic large bowel diarrhea. BMC Vet Res. 2022;18:244. doi:10.1186/s12917-022-03302-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Dennis JS, Kruger JM, Mullaney TP. Lymphocytic/plasmacytic colitis in cats: 14 cases (1985–1990). J Am Vet Med Assoc. 1993;202:313318.

    • Search Google Scholar
    • Export Citation
  • 117.

    Wernimont SM Fritsch D, Schiefelbein HM, Brejda JJ, Gross KL. Food with specialized dietary fiber sources improves clinical outcomes in adult cats with constipation or diarrhea. FASEB J. 2020;34:1.

    • Search Google Scholar
    • Export Citation
  • 118.

    Donadelli RA, Aldrich CG. The effects of diets varying in fibre sources on nutrient utilization, stool quality and hairball management in cats. J Anim Physiol Anim Nutr (Berl). 2020;104:715724. doi:10.1111/jpn.13289

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 119.

    Loureiro BA, Sembenelli G, Maria AP, et al. Sugarcane fibre may prevent hairball formation in cats. J Nutr Sci. 2014;3:e20.

  • 120.

    Weber M, Sams L, Feugier A, Michel S, Biourge V. Influence of the dietary fibre levels on faecal hair excretion after 14 days in short and long-haired domestic cats. Vet Med Sci. 2015;1:3037. doi:10.1002/vms3.6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Miltenburg TZ, Peralta RM, Oliveira CAL, et al. Effects of combined use of keratinolytic enzymes and sugarcane fibre on the hairball excretion in cats. J Anim Physiol Anim Nutr (Berl). 2021;105(suppl 2):129137. doi:10.1111/jpn.13177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122.

    Tournier C, Dumon H, Nguyen P, Biourge V. Dietary fiber stimulates fecal hair excretion in cats. In: European Society of Veterinary and Comparative Nutrition Grugliasco, Italy, 2005.

  • 123.

    Dimski DS. Constipation: pathophysiology, diagnostic approach, and treatment. Semin Vet Med Surg Small Anim. 1989;4:247254.

  • 124.

    Barry KA, Wojcicki BJ, Middelbos IS, Vester BM, Swanson KS, Fahey GC Jr. Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats. J Anim Sci. 2010;88:29782987. doi:10.2527/jas.2009-2464

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 125.

    Hallman JER, Reinhart GA, Wallace EA, Milliken A, Clemens ET. Colonic mucosal tissue energetics and electrolyte transport in dogs fed cellulose, beet pulp or pectin/gum arabic as their primary fiber source. Nutr Res. 1996;16:303313. doi:10.1016/0271-5317(96)00014-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126.

    Freiche V, Houston D, Weese H, et al. Uncontrolled study assessing the impact of a psyllium-enriched extruded dry diet on faecal consistency in cats with constipation. J Feline Med Surg. 2011;13:903911. doi:10.1016/j.jfms.2011.07.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127.

    Oh HG, Lee HY, Seo MY, et al. Effects of Ficus carica paste on constipation induced by a high-protein feed and movement restriction in beagles. Lab Anim Res. 2011;27:275281. doi:10.5625/lar.2011.27.4.275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128.

    Strompfova V, Laukova A, Cilik D. Synbiotic administration of canine-derived strain Lactobacillus fermentum CCM 7421 and inulin to healthy dogs. Can J Microbiol. 2013;59:347352. doi:10.1139/cjm-2012-0472

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Dietary fiber aids in the management of canine and feline gastrointestinal disease

Adam A. MorenoDepartment of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Adam A. Moreno in
Current site
Google Scholar
PubMed
Close
 DVM
,
Valerie J. ParkerDepartment of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Valerie J. Parker in
Current site
Google Scholar
PubMed
Close
 DVM, DACVIM (SAIM and Nutrition)
,
Jenessa A. WinstonDepartment of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Jenessa A. Winston in
Current site
Google Scholar
PubMed
Close
 DVM, PhD, DACVIM (SAIM)
, and
Adam J. RudinskyDepartment of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Adam J. Rudinsky in
Current site
Google Scholar
PubMed
Close
 DVM, MS, DACVIM (SAIM)
View More View Less

Abstract

Dietary fiber describes a diverse assortment of nondigestible carbohydrates that play a vital role in the health of animals and maintenance of gastrointestinal tract homeostasis. The main roles dietary fiber play in the gastrointestinal tract include physically altering the digesta, modulating appetite and satiety, regulating digestion, and acting as a microbial energy source through fermentation. These functions can have widespread systemic effects. Fiber is a vital component of nearly all commercial canine and feline diets. Key features of fiber types, such as fermentability, solubility, and viscosity, have been shown to have clinical implications as well as health benefits in dogs and cats. Practitioners should know how to evaluate a diet for fiber content and the current knowledge on fiber supplementation as it relates to common enteropathies including acute diarrhea, chronic diarrhea, constipation, and hairball management. Understanding the fundamentals of dietary fiber allows the practicing clinician to use fiber optimally as a management modality.

Abstract

Dietary fiber describes a diverse assortment of nondigestible carbohydrates that play a vital role in the health of animals and maintenance of gastrointestinal tract homeostasis. The main roles dietary fiber play in the gastrointestinal tract include physically altering the digesta, modulating appetite and satiety, regulating digestion, and acting as a microbial energy source through fermentation. These functions can have widespread systemic effects. Fiber is a vital component of nearly all commercial canine and feline diets. Key features of fiber types, such as fermentability, solubility, and viscosity, have been shown to have clinical implications as well as health benefits in dogs and cats. Practitioners should know how to evaluate a diet for fiber content and the current knowledge on fiber supplementation as it relates to common enteropathies including acute diarrhea, chronic diarrhea, constipation, and hairball management. Understanding the fundamentals of dietary fiber allows the practicing clinician to use fiber optimally as a management modality.

Contributor Notes

Corresponding author: Dr. Rudinsky (rudinsky.3@osu.edu)