Patterns of bacterial culture and antimicrobial susceptibility test results for dogs with retrobulbar abscesses: 133 cases (2002–2019)

Stephanie A. PumphreyDepartment of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA

Search for other papers by Stephanie A. Pumphrey in
Current site
Google Scholar
PubMed
Close
 DVM
and
Annie S. WayneDepartment of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA

Search for other papers by Annie S. Wayne in
Current site
Google Scholar
PubMed
Close
 DVM
View More View Less

Abstract

OBJECTIVE

To evaluate patterns of bacterial culture and antimicrobial susceptibility test results for dogs with retrobulbar abscesses and generate recommendations for empirical antimicrobial selection.

ANIMALS

133 dogs examined between 2002 and 2019.

PROCEDURES

Records were retrospectively reviewed to determine type of bacterial culture, number and type of bacterial isolates, antimicrobial susceptibility test results, concurrent and recent antimicrobial exposure, effect of culture results on antimicrobial regimen, and outcome.

RESULTS

Aerobic culture alone was performed in 37 dogs, and aerobic and anaerobic culture was performed in 96 dogs. Isolates were recovered from 96 dogs, with multiple isolates recovered from 54 (56%) of those dogs. Of the 69 dogs for which both aerobic and anaerobic culture was performed and at least 1 isolate was obtained, 34 (49%) had purely aerobic infections, 15 (22%) had mixed aerobic and anaerobic infections, and 20 (29%) had purely anaerobic infections. Pasteurella spp (n = 26), Streptococcus spp (20), and Escherichia coli (12) were the most common aerobic isolates. Bacteroides spp (n = 22), Actinomyces spp (10), and Fusobacterium (10) spp were the most common anaerobic isolates. Susceptibility test results led to changes in the antimicrobial regimen in 37 of 80 (46%) dogs. Of the 76 dogs for which outcome information was available, 78 (97%) recovered.

CLINICAL RELEVANCE

Multipathogen and anaerobic infections were common in dogs with retrobulbar abscesses. Susceptibility data supported the use of amoxicillin-clavulanate or a combination of clindamycin and enrofloxacin as first-line treatments. Additional study is needed to characterize anaerobic antimicrobial susceptibilities and to compare results of susceptibility testing with in vivo responses to antimicrobial administration.

Abstract

OBJECTIVE

To evaluate patterns of bacterial culture and antimicrobial susceptibility test results for dogs with retrobulbar abscesses and generate recommendations for empirical antimicrobial selection.

ANIMALS

133 dogs examined between 2002 and 2019.

PROCEDURES

Records were retrospectively reviewed to determine type of bacterial culture, number and type of bacterial isolates, antimicrobial susceptibility test results, concurrent and recent antimicrobial exposure, effect of culture results on antimicrobial regimen, and outcome.

RESULTS

Aerobic culture alone was performed in 37 dogs, and aerobic and anaerobic culture was performed in 96 dogs. Isolates were recovered from 96 dogs, with multiple isolates recovered from 54 (56%) of those dogs. Of the 69 dogs for which both aerobic and anaerobic culture was performed and at least 1 isolate was obtained, 34 (49%) had purely aerobic infections, 15 (22%) had mixed aerobic and anaerobic infections, and 20 (29%) had purely anaerobic infections. Pasteurella spp (n = 26), Streptococcus spp (20), and Escherichia coli (12) were the most common aerobic isolates. Bacteroides spp (n = 22), Actinomyces spp (10), and Fusobacterium (10) spp were the most common anaerobic isolates. Susceptibility test results led to changes in the antimicrobial regimen in 37 of 80 (46%) dogs. Of the 76 dogs for which outcome information was available, 78 (97%) recovered.

CLINICAL RELEVANCE

Multipathogen and anaerobic infections were common in dogs with retrobulbar abscesses. Susceptibility data supported the use of amoxicillin-clavulanate or a combination of clindamycin and enrofloxacin as first-line treatments. Additional study is needed to characterize anaerobic antimicrobial susceptibilities and to compare results of susceptibility testing with in vivo responses to antimicrobial administration.

Contributor Notes

Corresponding author: Dr. Pumphrey (stephanie.pumphrey@tufts.edu)
  • 1.

    Pot SA, Voelter K, Kircher PR. Diseases and surgery of the canine orbit. In: Gelatt KN, Gilger BC, Kern TJ, eds. Veterinary Ophthalmology. 6th ed. John Wiley & Sons Inc; 2021:879922.

    • Search Google Scholar
    • Export Citation
  • 2.

    Fischer MC, Adrian AM, Demetriou J, Nelissen P, Busse C. Retrobulbar cellulitis and abscessation: focus on short- and long-term concurrent ophthalmic diseases in 41 dogs. J Small Anim Pract. 2018;59(12):763768. doi:10.1111/jsap.12924

    • Search Google Scholar
    • Export Citation
  • 3.

    Sauvage A, Bolen G, Monclin S, Grauwels M. Orbital compartment syndrome resulting in unilateral blindness in two dogs. Open Vet J. 2018;8(4):445451. doi:10.4314/ovj.v8i4.15

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Forward AK, Plessas IN, Guilherme S, De Decker S. Retrospective evaluation of the clinical presentation, magnetic resonance imaging findings, and outcome of dogs diagnosed with intracranial empyema (2008–2015): 9 cases. J Vet Emerg Crit Care (San Antonio). 2019;29(4):431438. doi:10.1111/vec.12859

    • Search Google Scholar
    • Export Citation
  • 5.

    Collins BK, Moore CP, Dubielzig DD, Gengler WR. Anaerobic orbital cellulitis and septicemia in a dog. Can Vet J. 1991;32(11):683685.

  • 6.

    Robbins SN, Goggs R, Lhermie G, Lalonde-Paul DF, Menard J. Antimicrobial prescribing practices in small animal emergency and critical care. Front Vet Sci. 2020;7:110. doi:10.3389/fvets.2020.00110

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Scarborough R, Bailey K, Galgut B, et al. Use of local antibiogram data and antimicrobial importance ratings to select optimal empirical therapies for urinary tract infections in dogs and cats. Antibiotics (Basel). 2020;9(12):924. doi:10.3390/antibiotics9120924

    • Search Google Scholar
    • Export Citation
  • 8.

    Feyes EE, Diaz-Campos D, Mollenkopf DF, et al. Implementation of an antimicrobial stewardship program in a veterinary medical teaching institution. J Am Vet Med Assoc. 2021;258(2):170178. doi:10.2460/javma.258.2.170

    • Search Google Scholar
    • Export Citation
  • 9.

    Frey E, Jacob M. Commentary. Using antibiograms to promote antimicrobial stewardship during treatment of bacterial cystitis and superficial bacterial folliculitis in companion animal practice. J Am Vet Med Assoc. 2020;257(9):900903. doi:10.2460/javma.257.9.900

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Frey E, Jacob M. Development of a method for creating antibiograms for use in companion animal private practices. J Am Vet Med Assoc. 2020;257(9):950960. doi:10.2460/javma.257.9.950

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wang AL, Ledbetter EC, Kern TJ. Orbital abscess bacterial isolates and in vitro antimicrobial susceptibility patterns in dogs and cats. Vet Ophthalmol. 2009;12(2):9196. doi:10.1111/j.1463-5224.2008.00687.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268281. doi:10.1111/j.1469-0691.2011.03570.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bassetti M, Giacobbe DR, Robba C, Pelosi P, Vena A. Treatment of extended spectrum β-lactamases infections: what is the current role of new β-lactams/β-lactamase inhibitors? Curr Opin Infect Dis. 2020;33(6):474481. doi:10.1097/QCO.0000000000000685

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sanchez GV, Fleming-Dutra KE, Roberts RM, Hicks LA. Core elements of outpatient antibiotic stewardship. MMWR Recomm Rep. 2016;65(6):112. doi:10.15585/mmwr.rr6506a1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jung WK, Shin S, Park YK, et al. Distribution and antimicrobial resistance profiles of bacterial species in stray dogs, hospital-admitted dogs, and veterinary staff in South Korea. Prev Vet Med. 2020;184:105151. doi:10.1016/j.prevetmed.2020.105151

    • Search Google Scholar
    • Export Citation
  • 16.

    Toombs-Ruane LJ, Benschop J, French NP, et al. Carriage of extended-spectrum-beta-lactamase- and AmpC beta-lactamase-producing Escherichia coli strains from humans and pets in the same households. Appl Environ Microbiol. 2020;86(24):e01613e01620. doi:10.1128/AEM.01613-20

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bourély C, Cazeau G, Jouy E, et al. Antimicrobial resistance of Pasteurella multocida isolated from diseased food-producing animals and pets. Vet Microbiol. 2019;235:280284. doi:10.1016/j.vetmic.2019.07.017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Awosile BB, McClure JT, Saab WE, Heider LC. Antimicrobial resistance in bacteria isolated in cats and dogs from the Atlantic Provinces, Canada from 1994–2013. Can Vet J. 2018;59(8):885893.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ferreira TSP, Moreno LZ, Felizardo MR, et al. Pheno- and genotypic characterization of Pasteurella multocida isolated from cats, dogs, and rabbits from Brazil. Comp Immunol Microbiol Infect Dis. 2016;45:4852. doi:10.1016/j.cimid.2016.02.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Meyers B, Schoeman JP, Goddard A, Picard J. The bacteriology and antimicrobial susceptibility of infected and non-infected dog bite wounds: 50 cases. Vet Microbiol. 2008;127(3-4):360368. doi:10.1016/j.vetmic.2007.09.004

    • Search Google Scholar
    • Export Citation
  • 21.

    Prajapati A, Chanda MM, Dhayalan A, et al. Variability in in vitro biofilm production and antibiotic sensitivity pattern among Pasteurella multocida strains. Biofouling. 2020;36(8):938950. doi:10.1080/08927014.2020.1833192

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Samir A, Abdel-Moein KA, Zaher HM. Emergence of penicillin-macrolide-resistant Streptococcus pyogenes among pet animals: an ongoing public health threat. Comp Immunol Microbiol Infect Dis. 2020;68:101390. doi:10.1016/j.cimid.2019.101390

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Perkins AV, Sellon DC, Gay JM, et al. Prevalence of methicillin-resistant Staphylococcus aureus on hand-contact and animal-contact surfaces in companion animal community hospitals. Can Vet J. 2020;61(6):613620.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Schmitt S, Stephan R, Huebschke E, Schaefle D, Merz A, Johler S. DNA microarray-based characterization and antimicrobial resistance phenotypes of clinical MRSA strains from animal hosts. J Vet Sci. 2020;21(4):e54. doi:10.4142/jvs.2020.21.e54

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ortiz-Díez G, López R, Sánchez-Díaz AM, et al. Epidemiology of the colonization and acquisition of methicillin-resistant staphylococci and vancomycin-resistant enterococci in dogs hospitalized in a clinic veterinary hospital in Spain. Comp Immunol Microbiol Infect Dis. 2020;72:101501. doi:10.1016/j.cimid.2020.101501

    • Search Google Scholar
    • Export Citation
  • 26.

    Iseppi R, Di Cerbo A, Messi P, Sabia C. Antibiotic resistance and virulence traits in vancomycin-resistant enterococci (VRE) and extended-spectrum β-lactamase/AmpC-producing (ESBL/AmpC) Enterobacteriaceae from humans and pets. Antibiotics (Basel). 2020;9(4):152. doi:10.3390/antibiotics9040152

    • Search Google Scholar
    • Export Citation
  • 27.

    Shnaiderman-Torban A, Navon-Venezia S, Kelmer E, et al. Extended-spectrum β-lactamase-producing Enterobacterales shedding by dogs and cats hospitalized in an emergency and critical care department of a veterinary teaching hospital. Antibiotics (Basel). 2020;9(9):545. doi:10.3390/antibiotics9090545

    • Search Google Scholar
    • Export Citation
  • 28.

    Schmidt VM, Pinchbeck G, McIntyre KM, et al. Routine antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal Escherichia coli. J Antimicrob Chemother. 2018;73(12):33053316. doi:10.1093/jac/dky352

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kurita G, Tsuyuki Y, Murata Y, et al. Reduced rates of antimicrobial resistance in Staphylococcus intermedius group and Escherichia coli isolated from diseased companion animals in an animal hospital after restriction of antimicrobial use. J Infect Chemother. 2019;25(7):531536.

    • Search Google Scholar
    • Export Citation
  • 30.

    Homma K, Schoster JV. Anaerobic orbital abscess/cellulitis in a Yorkshire Terrier dog. J Vet Med Sci. 2000;62(10):11051107.

  • 31.

    Tsuyuki Y, Nakazawa S, Kubo S, Takahashi T; Veterinary Infection Control Association (VICA) AMR Working Group. Antimicrobial susceptibility patterns of anaerobic bacteria identified from clinical specimens of diseased dogs and cats. J Vet Med Sci. 2020;82(9):13161320. doi:10.1292/jvms.20-0294

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jang SS, Breher JE, Dabaco LA, Hirsh DC. Organisms isolated from dogs and cats with anaerobic infections and susceptibility to selected antimicrobial agents. J Am Vet Med Assoc. 1997;210(11):16101614.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lawhon SD, Taylor A, Fajt VR. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents. J Clin Microbiol. 2013;51(11):38043810. doi:10.1128/JCM.01432-13

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pence MA. Antimicrobial resistance in clinically important anaerobes. Clin Microbiol Newsl. 2019;41(1):17.

  • 35.

    Gajdács M, Spengler G, Urban E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: Rubik’s Cube of clinical microbiology? Antibiotics (Basel). 2017;6(4):25. doi:10.3390/antibiotics6040025

    • Search Google Scholar
    • Export Citation
  • 36.

    Hastey CJ, Boyd H, Schuetz AN, et al. Changes in the antibiotic susceptibility of anaerobic bacteria from 2007–2009 to 2010–2012 based on the CLSI methodology. Anaerobe. 2016;42:2730. doi:10.1016/j.anaerobe.2016.07.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Bjöersdorff OG, Lindberg S, Kiil K, Persson S, Guardabassi L, Damborg P. Dogs are carriers of Clostridioides difficile lineages associated with human community-acquired infections. Anaerobe. 2021;67:102317. doi:10.1016/j.anaerobe.2020.102317

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Barbanti F, Spigaglia P. Microbiological characteristics of human and animal isolates of Clostridioides difficile in Italy: results of the Istituto Superiore di Sanità in the years 2006–2016. Anaerobe. 2020;61:102136. doi:10.1016/j.anaerobe.2019.102136

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Byun JH, Kim M, Lee Y, Lee K, Chong Y. Antimicrobial susceptibility patterns of anaerobic bacterial clinical isolates from 2014 to 2016, including recently named or renamed species. Ann Lab Med. 2019;39(2):190199. doi:10.3343/alm.2019.39.2.190

    • Search Google Scholar
    • Export Citation
  • 40.

    Steininger C, Willinger B. Resistance patterns in clinical isolates of pathogenic Actinomyces species. J Antimicrob Chemother. 2016;71(2):422427. doi:10.1093/jac/dkv347

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Jager NGL, van Hest RM, Lipman J, Roberts JA, Cotta MO. Antibiotic exposure at the site of infection: principles and assessment of tissue penetration. Expert Rev Clin Pharmacol. 2019;12(7):623634. doi:10.1080/17512433.2019.1621161

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Thabit AK, Fatani DF, Bamakhrama MS, Barnawi OA, Basudan LO, Alhejaili SF. Antibiotic penetration into bone and joints: an updated review. Int J Infect Dis. 2019;81:128136. doi:10.1016/j.ijid.2019.02.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Legat FJ, Krause R, Zenahlik P, et al. Penetration of piperacillin and tazobactam into inflamed soft tissue of patients with diabetic foot infection. Antimicrob Agents Chemother. 2005;49(10):43684371. doi:10.1128/AAC.49.10.4368-4371.2005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tomas A, Stilinovic N, Sabo A, Tomic Z. Use of microdialysis for the assessment of fluoroquinolone pharmacokinetics in the clinical practice. Eur J Pharm Sci. 2019;131:230242. doi:10.1016/j.ejps.2019.02.032

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Van der Auwera P, Matsumoto T, Husson M. Intraphagocytic penetration of antibiotics. J Antimicrob Chemother. 1988;22(2):185192. doi:10.1093/jac/22.2.185

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Duckworth C, Fisher JF, Carter SA, et al. Tissue penetration of clindamycin in diabetic foot infections. J Antimicrob Chemother. 1993;31(4):581584. doi:10.1093/jac/31.4.581

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Liu P, Muller M, Grant M, Webb AI, Overmann B, Derendorf H. Interstitial tissue concentrations of cefpodoxime. J Antimicrob Chemother. 2002;50(suppl):1922. doi:10.1093/jac/dkf804

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Somerville TF, Corless CE, Sueke H, Neal T, Kaye SB. 16S ribosomal RNA PCR versus conventional diagnostic culture in the investigation of suspected bacterial keratitis. Transl Vis Sci Technol. 2020;9(13):2. doi:10.1167/tvst.9.13.2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Abd El-Aziz NK, Gharib AA, Mohamed EAA, Hussein AH. Real-time PCR versus MALDI-TOF MS and culture-based techniques for diagnosis of bloodstream and pyogenic infections in humans and animals. J Appl Microbiol. 2021;130(5):16301644. doi:10.1111/jam.14862

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Lenhart-Pendergrass PM, Caverly LJ, Wagner BD, et al. Clinical characteristics and outcomes associated with Inquilinus infection in cystic fibrosis. J Cyst Fibros. 2021;20(2):310315. doi:10.1016/j.jcf.2020.07.011

    • PubMed
    • Search Google Scholar
    • Export Citation

Advertisement