• 1.

    Ruaux CG. Cobalamin in companion animals: diagnostic marker, deficiency states and therapeutic implications. Vet J. 2013;196(2):145152.

  • 2.

    Carmel R. Current concepts in cobalamin deficiency. Annu Rev Med. 2000;51:357375.

  • 3.

    Kather S, Grutzner N, Kook PH, Dengler F, Heilmann RM. Review of cobalamin status and disorders of cobalamin metabolism in dogs. J Vet Intern Med. 2020;34(1):1328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Banerjee R. B12 trafficking in mammals: a for coenzyme escort service. ACS Chem Biol. 2006;1(3):149159.

  • 5.

    Fyfe J. Feline intrinsic factor (IF) is pancreatic in origin and mediates ileal cobalamin (CBL) absorption. J Vet Intern Med. 1993;7:133.

    • Search Google Scholar
    • Export Citation
  • 6.

    Fyfe JC, Ramanujam KS, Ramaswamy K, Patterson DF, Seetharam B. Defective brush-border expression of intrinsic factor-cobalamin receptor in canine inherited intestinal cobalamin malabsorption. J Biol Chem. 1991;266(7):44894494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kempf J, Hersberger M, Melliger RH, Reusch CE, Kook PH. Effects of 6 weeks of parenteral cobalamin supplementation on clinical and biochemical variables in cats with gastrointestinal disease. J Vet Intern Med. 2017;31(6):16641672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Fordyce HH, Callan MB, Giger U. Persistent cobalamin deficiency causing failure to thrive in a juvenile Beagle. J Small Anim Pract. 2000;41(9):407410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Battersby IA, Giger U, Hall EJ. Hyperammonaemic encephalopathy secondary to selective cobalamin deficiency in a juvenile Border Collie. J Small Anim Pract. 2005;46(7):339344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Lutz S, Sewell AC, Reusch CE, Kook PH. Clinical and laboratory findings in Border Collies with presumed hereditary juvenile cobalamin deficiency. J Am Anim Hosp Assoc. 2013;49(3):197203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Salvadori C, Cantile C, De Ambrogi G, Arispici M. Degenerative myelopathy associated with cobalamin deficiency in a cat. J Vet Med A Physiol Pathol Clin Med. 2003;50(6):292296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Simpson K, Battersby I, Lowrie M. Suspected acquired hypocobalaminaemic encephalopathy in a cat: resolution of encephalopathic signs and MRI lesions subsequent to cobalamin supplementation. J Feline Med Surg. 2012;14(5):350355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Batt RM, Morgan JO. Role of serum folate and vitamin B12 concentrations in the differentiation of small intestinal abnormalities in the dog. Res Vet Sci. 1982;32(1):1722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bird L, Tappin S. Canine parvovirus: where are we in the 21st century? Companion Anim. 2013;18(4):142146.

  • 15.

    Prittie J. Canine parvoviral enteritis: a review of diagnosis, management, and prevention. J Vet Emerg Crit Care (San Antonio). 2004;14(3):167176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Goddard A, Leisewitz AL. Canine parvovirus. Vet Clin North Am Small Anim Pract. 2010;40(6):10411053.

  • 17.

    Lamm CG, Rezabek GB. Parvovirus infection in domestic companion animals. Vet Clin North Am Small Anim Pract. 2008;38(4):837850, viii–ix.

  • 18.

    Karademir F, Suleymanoglu S, Ersen A, et al. Vitamin B12, folate, homocysteine and urinary methylmalonic acid levels in infants. J Int Med Res. 2007;35(3):384388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bjørke Monsen AL, Ueland PM, Vollset SE, et al. Determinants of cobalamin status in newborns. Pediatrics. 2001;108(3):624630.

  • 20.

    Refsum H, Grindflek AW, Ueland PM, et al. Screening for serum total homocysteine in newborn children. Clin Chem. 2004;50(10):17691784.

  • 21.

    Minet J-C, Bissé E, Aebischer C-P, Beil A, Wieland H, Lütschg J. Assessment of vitamin B-12, folate, and vitamin B-6 status and relation to sulfur amino acid metabolism in neonates. Am J Clin Nutr. 2000;72(3):751757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hay G, Johnston C, Whitelaw A, Trygg K, Refsum H. Folate and cobalamin status in relation to breastfeeding and weaning in healthy infants. Am J Clin Nutr. 2008;88(1):105114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Cerón JJ, Eckersall PD, Martínez-Subiela S. Acute phase proteins in dogs and cats: current knowledge and future perspectives. Vet Clin Pathol. 2005;34(2):8599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Baumann H, Gauldie J. The acute phase response. Immunol Today. 1994;15(2):7480.

  • 25.

    McClure V, van Schoor M, Thompson PN, Kjelgaard-Hansen M, Goddard A. Evaluation of the use of serum C-reactive protein concentration to predict outcome in puppies infected with canine parvovirus. J Am Vet Med Assoc. 2013;243(3):361366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Engelbrecht M, Atkinson B, Goddard A, Pazzi P, McClure V. Mean platelet volume and platelet volume distribution width in canine parvoviral enteritis. Front Vet Sci. 2021;8:722280. doi:10.3389/fvets.2021.722280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Atkinson B, Pretorious S, Goddard A, Pazzi P. Circulating markers of endothelial activation in canine parvoviral enteritis. J S Afr Vet Assoc. 2022;in press.

    • Search Google Scholar
    • Export Citation
  • 28.

    du Preez K, Rautenbach Y, Hooijberg EH, Goddard A. Oxidative burst and phagocytic activity of phagocytes in canine parvoviral enteritis. J Vet Diagn Invest. 2021;33(5):884893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Berghoff N, Parnell NK, Hill SL, Suchodolski JS, Steiner JM. Serum cobalamin and methylmalonic acid concentrations in dogs with chronic gastrointestinal disease. Am J Vet Res. 2013;74(1):8489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    German AJ, Day MJ, Ruaux CG, Steiner JM, Williams DA, Hall EJ. Comparison of direct and indirect tests for small intestinal bacterial overgrowth and antibiotic-responsive diarrhea in dogs. J Vet Intern Med. 2003;17(1):3343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Allenspach K, Wieland B, Gröne A, Gaschen F. Chronic enteropathies in dogs: evaluation of risk factors for negative outcome. J Vet Intern Med. 2007;21(4):700708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Batchelor DJ, Noble PJM, Taylor RH, Cripps PJ, German AJ. Prognostic factors in canine exocrine pancreatic insufficiency: prolonged survival is likely if clinical remission is achieved. J Vet Intern Med. 2007;21(1):5460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Cook AK, Wright ZM, Suchodolski JS, Raquel Brown M, Steiner JM. Prevalence and prognostic impact of hypocobalaminemia in dogs with lymphoma. J Am Vet Med Assoc. 2009;235(12):14371441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Dossin O, Lavoue R. Protein-losing enteropathies in dogs. Vet Clin North Am Small Anim Pract. 2011;41(2):399418.

  • 35.

    Fyfe JC, Giger U, Patterson D. Inherited selective malabsorption of vitamin B12 in Giant Schnauzers. J Am Anim Hosp Assoc. 1989;25:533539.

    • Search Google Scholar
    • Export Citation
  • 36.

    Morgan LW, McConnell J. Cobalamin deficiency associated with erythroblastic anemia and methylmalonic aciduria in a Border Collie. J Am Anim Hosp Assoc. 1999;35(5):392395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Bishop MA, Xenoulis PG, Berghoff N, Grützner N, Suchodolski JS, Steiner JM. Partial characterization of cobalamin deficiency in Chinese Shar Peis. Vet J. 2012;191(1):4145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    He Q, Fyfe JC, Schäffer AA, et al. Canine Imerslund-Gräsbeck syndrome maps to a region orthologous to HSA14q. Mamm Genome. 2003;14(11):758764.

  • 39.

    Majchrzak D, Singer I, Männer M, et al. B-vitamin status and concentrations of homocysteine in Austrian omnivores, vegetarians and vegans. Ann Nutr Metab. 2006;50(6):485491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Berghoff N, Steiner JM. Laboratory tests for the diagnosis and management of chronic canine and feline enteropathies. Vet Clin North Am Small Anim Pract. 2011;41(2):311328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Suchodolski JS. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. Vet J. 2016;215:3037.

  • 42.

    Singh VV, Toskes PP. Small bowel bacterial overgrowth: presentation, diagnosis, and treatment. Curr Gastroenterol Rep. 2003;5(5):365372.

  • 43.

    Giannella RA, Broitman SA, Zamcheck N. Competition between bacteria and intrinsic factor for vitamin B 12: implications for vitamin B 12 malabsorption in intestinal bacterial overgrowth. Gastroenterology. 1972;62(2):255260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Park JS, Guevarra RB, Kim BR, et al. Intestinal microbial dysbiosis in Beagles naturally infected with canine parvovirus. J Microbiol Biotechnol. 2019;29(9):13911400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Pereira GQ, Gomes LA, Santos IS, Alfieri AF, Weese JS, Costa MC. Fecal microbiota transplantation in puppies with canine parvovirus infection. J Vet Intern Med. 2018;32(2):707711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Batt RM, Horadagoda NU, McLean L, Morton DB, Simpson KW. Identification and characterization of a pancreatic intrinsic factor in the dog. Am J Physiol. 1989;256(3 pt 1):G517G523.

    • Search Google Scholar
    • Export Citation
  • 47.

    Packer RA, Cohn LA, Wohlstadter DR, et al. D-lactic acidosis secondary to exocrine pancreatic insufficiency in a cat. J Vet Intern Med. 2005;19(1):106110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Thompson KA, Parnell NK, Hohenhaus AE, Moore GE, Rondeau MP. Feline exocrine pancreatic insufficiency: 16 cases (1992–2007). J Feline Med Surg. 2009;11(12):935940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Kook PH, Zerbe P, Reusch CE. Exocrine pancreatic insufficiency in the cat. Article in German. Schweiz Arch Tierheilkd. 2011;153(1):1925.

  • 50.

    Watanabe T, Hoshi K, Zhang C, Ishida Y, Sakata I. Hyperammonaemia due to cobalamin malabsorption in a cat with exocrine pancreatic insufficiency. J Feline Med Surg. 2012;14(12):942945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Batt RM, Horadagoda NU. Gastric and pancreatic intrinsic factor-mediated absorption of cobalamin in the dog. Am J Physiol. 1989;257(3 pt 1):G344G349.

    • Search Google Scholar
    • Export Citation
  • 52.

    Simpson KW, Morton DB, Batt RM. Effect of exocrine pancreatic insufficiency on cobalamin absorption in dogs. Am J Vet Res. 1989;50(8):12331236.

    • Search Google Scholar
    • Export Citation
  • 53.

    Guéant JL, Champigneulle B, Gaucher P, Nicolas JP. Malabsorption of vitamin B12 in pancreatic insufficiency of the adult and of the child. Pancreas. 1990;5(5):559567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Marcoullis G, Parmentier Y, Nicolas JP, Jimenez M, Gerard P. Cobalamin malabsorption due to nondegradation of R proteins in the human intestine. Inhibited cobalamin absorption in exocrine pancreatic dysfunction. JCI. 1980;66(3):430440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Kalli IV, Adamama-Moraitou KK, Patsika MN, et al. Prevalence of increased canine pancreas-specific lipase concentrations in young dogs with parvovirus enteritis. Vet Clin Pathol. 2017;46(1):111119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Glass GB, Mersheimer WL. Radioactive vitamin B12 in the liver. II. Hepatic deposition, storage, and discharge of Co60B12 in dogs. J Lab Clin Med. 1958;52(6):860874.

    • Search Google Scholar
    • Export Citation
  • 57.

    Birch CS, Brasch NE, McCaddon A, Williams JHH. A novel role for vitamin B(12): cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med. 2009;47(2):184188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Manzanares W, Hardy G. Vitamin B12: the forgotten micronutrient for critical care. Curr Opin Clin Nutr Metab Care. 2010;13(6):662668.

  • 59.

    McCaddon A, Regland B, Hudson P, Davies G. Functional vitamin B12 deficiency and Alzheimer disease. Neurology. 2002;58(9):13951399.

  • 60.

    Rozycka A, Jagodzinski PP, Kozubski W, Lianeri M, Dorszewska J. Homocysteine level and mechanisms of injury in Parkinson’s disease as related to MTHFR, MTR, and MTHFD1 genes polymorphisms and LDopa treatment. Curr Genomics. 2013;14(8):534542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757772.

  • 62.

    Czerska M, Mikołajewska K, Zieliński M, Gromadzińska J, Wąsowicz W. Today’s oxidative stress markers. Med Pr. 2015;66(3):393405.

  • 63.

    Noori S. An overview of oxidative stress and antioxidant defensive system. Open Access Sci Rep. 2012;1(8):413. doi:10.4172/scientificreports.413

    • Search Google Scholar
    • Export Citation
  • 64.

    Panda D, Patra RC, Nandi S, Swarup D. Oxidative stress indices in gastroenteritis in dogs with canine parvoviral infection. Res Vet Sci. 2009;86(1):3642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Elsayed NM, Kubesy A, Salem NY. Altered blood oxidative stress biomarkers in association with canine parvovirus enteritis. Comp Clin Path. 2020;29:355359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Densupsoontorn N, Issaragraiseel P, Thamonsiri N, Wongarn R, Jirapinyo P. Whole gastrointestinal transit time is associated with clinical severity and nutritional status of HIV-infected children. J Med Assoc Thai. 2009;92(7):914919.

    • Search Google Scholar
    • Export Citation
  • 67.

    Carlson S, Yokoo H, Craig RM. Small intestinal HIV-associated enteropathy: evidence for panintestinal enterocyte dysfunction. J Lab Clin Med. 1994;124(5):652659.

    • Search Google Scholar
    • Export Citation
  • 68.

    Mohr AJ, Leisewitz AL, Jacobson LS, Steiner JM, Ruaux CG, Williams DA. Effect of early enteral nutrition on intestinal permeability, intestinal protein loss, and outcome in dogs with severe parvoviral enteritis. J Vet Intern Med. 2003;17(6):791798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Schoeman JP, Goddard A, Leisewitz AL. Biomarkers in canine parvovirus enteritis. N Z Vet J. 2013;61(4):217222.

  • 70.

    van den Broek AH. Serum protein electrophoresis in canine parvovirus enteritis. Br Vet J. 1990;146(3):255259.

  • 71.

    van den Berg MF, Schoeman JP, Defauw P, et al. Assessment of acute kidney injury in canine parvovirus infection: comparison of kidney injury biomarkers with routine renal functional parameters. Vet J. 2018;242:814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Chatzis MK, Kasabalis D, Steiner JM, Saridomichelakis MN, Suchodolski JS, Xenoulis PG. Serum cobalamin concentrations in dogs with leishmaniosis before and during treatment. Comp Immunol Microbiol Infect Dis. 2021;78:101686. doi:10.1016/j.cimid.2021.101686

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Simpson KW, Fyfe J, Cornetta A, Strauss-Ayali D, Lamb SV, Reimers TJ. Subnormal concentrations of serum cobalamin (vitamin B12) in cats with gastrointestinal disease. J Vet Intern Med. 2001;15(1):2632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Geesaman BM, Whitehouse WH, Viviano KR. Serum cobalamin and methylmalonic acid concentrations in hyperthyroid cats before and after radioiodine treatment. J Vet Intern Med. 2016;30(2):560565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Sykes JE. Canine parvovirus infections and other viral enteritides. In: Canine and Feline Infectious Diseases. Saunders; 2014:141151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Cohn LA, Rewerts JM, McCaw D, Boon GD, Wagner-Mann C, Lothrop CD Jr. Plasma granulocyte colony-stimulating factor concentrations in neutropenic, parvoviral enteritis-infected puppies. J Vet Intern Med. 1999;13(6):581586.

    • Search Google Scholar
    • Export Citation
  • 77.

    Craven M, Simpson JW, Ridyard AE, Chandler ML. Canine inflammatory bowel disease: retrospective analysis of diagnosis and outcome in 80 cases (1995–2002). J Small Anim Pract. 2004;45(7):336342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Jergens AE, Schreiner CA, Frank DE, et al. A scoring index for disease activity in canine inflammatory bowel disease. J Vet Intern Med. 2003;17(3):291297.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Serum cobalamin concentrations in dogs infected with canine parvoviral enteritis

Monique EngelbrechtDepartment of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa

Search for other papers by Monique Engelbrecht in
Current site
Google Scholar
PubMed
Close
 BSc, BVSc
,
Willem Jacobus BothaPanorama Veterinary Clinic and Specialist Centre, Cape Town, South Africa

Search for other papers by Willem Jacobus Botha in
Current site
Google Scholar
PubMed
Close
 BSc, BVSc (Hons), MMedVet
,
Paolo PazziDepartment of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa

Search for other papers by Paolo Pazzi in
Current site
Google Scholar
PubMed
Close
 BSc, BVSc (Hons), MMedVet
,
Vanessa McClureDepartment of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa

Search for other papers by Vanessa McClure in
Current site
Google Scholar
PubMed
Close
 BSc, BVSc (Hons), MMedVet
, and
Emma HooijbergDepartment of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa

Search for other papers by Emma Hooijberg in
Current site
Google Scholar
PubMed
Close
 BVSc, GPCert (SAP), PhD

Abstract

OBJECTIVE

To compare the serum cobalamin concentrations in canine parvovirus (CPV)–infected dogs with those of healthy control dogs.

Animals

45 dogs with CPV enteritis and 17 healthy age-matched control dogs.

Procedures

Infection was confirmed by visualization of CPV-2 through fecal electron microscopy. All dogs received supportive care. Serum samples taken at admission were used to determine cobalamin, C-reactive protein, and albumin concentrations.

Results

Serum cobalamin concentrations were significantly lower in the CPV-infected group (median [interquartile range], 173 pmol/L [< 111 to 722 pmol/L]) than in healthy control dogs (379 pmol/L [193 to > 738 pmol/L). There was no association between cobalamin concentration and C-reactive protein or albumin concentration.

Clinical Relevance

While hypocobalaminemia was common in CPV-infected dogs, the clinical relevance of this finding remains to be determined. Studies assessing markers of cellular cobalamin deficiency in dogs with CPV infection appear warranted.

Abstract

OBJECTIVE

To compare the serum cobalamin concentrations in canine parvovirus (CPV)–infected dogs with those of healthy control dogs.

Animals

45 dogs with CPV enteritis and 17 healthy age-matched control dogs.

Procedures

Infection was confirmed by visualization of CPV-2 through fecal electron microscopy. All dogs received supportive care. Serum samples taken at admission were used to determine cobalamin, C-reactive protein, and albumin concentrations.

Results

Serum cobalamin concentrations were significantly lower in the CPV-infected group (median [interquartile range], 173 pmol/L [< 111 to 722 pmol/L]) than in healthy control dogs (379 pmol/L [193 to > 738 pmol/L). There was no association between cobalamin concentration and C-reactive protein or albumin concentration.

Clinical Relevance

While hypocobalaminemia was common in CPV-infected dogs, the clinical relevance of this finding remains to be determined. Studies assessing markers of cellular cobalamin deficiency in dogs with CPV infection appear warranted.

Supplementary Materials

    • Supplementary Table S1 (PDF 514 KB)
    • Supplementary Table S2 (PDF 138 KB)

Contributor Notes

Corresponding author: Dr. Engelbrecht (monique.engelbrecht@up.ac.za)