Damin-Pernik M, Espana B, Lefebvre S, et al. Management of rodent populations by anticoagulant rodenticides: toward third-generation anticoagulant rodenticides. Drug Metab Dispos. 2017;45(2):160–165.
Thijssen HHW. Warfarin-based rodenticides: mode of action and mechanism of resistance. Pest Manag Sci. 1995;43(1):73–78.
Lattard V, Benoit E. The stereoisomerism of second generation anticoagulant rodenticides: a way to improve this class of molecules to meet the requirements of society? Pest Manag Sci. 2019;75(4):887–892.
Dalefield R. Vertebrate pesticides. In: Dalefield R, ed. Veterinary Toxicology for Australia and New Zealand. Elsevier; 2017:119–145.
Murphy MJ. Anticoagulant rodenticides. In: Gupta RC, ed. Veterinary Toxicology: Basic and Clinical Principles. Elsevier; 2018:583–612.
Pesticide product and label system. US Environmental Protection Agency. Accessed July 15, 2021. https://iaspub.epa.gov/apex/pesticides/f?p=PPLS:1
Chetot T, Taufana S, Benoit E, Lattard V. Vitamin K antagonist rodenticides display different teratogenic activity. Reprod Toxicol. 2020;93:131–136.
Lao W, Gan J. Enantioselective degradation of warfarin in soils. Chirality. 2012;24(1):54–59.
Mcleod L, Saunders G. Pesticides Used in the Management of Vertebrate Pests in Australia: A Review. NSW Department of Primary Industries; 2013.
Mogi M, Toda A, Iwasaki K, et al. Simultaneous pharmacokinetics assessment of caffeine, warfarin, omeprazole, metoprolol, and midazolam intravenously or orally administered to microminipigs. J Toxicol Sci. 2012;37(6):1157–1164.
Crespo RF, Fernández SS, de Anda López D, Velarde FI, Anaya RM. Intramuscular inoculation of cattle with warfarin: a new technique for control of vampire bats. Bull Pan Am Health Organ. 1979;13(2):147–161.
Berny PJ, de Oliveira LA, Videmann B, Rossi S. Assessment of ruminal degradation, oral bioavailability, and toxic effects of anticoagulant rodenticides in sheep. Am J Vet Res. 2006;67(2):363–371.
Nakayama SMM, Morita A, Ikenaka Y, Mizukawa H, Ishizuka M. A review: poisoning by anticoagulant rodenticides in non-target animals globally. J Vet Med Sci. 2019;81(2):298–313.
Watanabe KP, Kawata M, Ikenaka Y, et al. Cytochrome P450–mediated warfarin metabolic ability is not a critical determinant of warfarin sensitivity in avian species: in vitro assays in several birds and in vivo assays in chicken. Environ Toxicol Chem. 2015;34(10):2328–2334.
Kammerer M, Pouliquen H, Pinault L, Loyau M. Residues depletion in egg after warfarin ingestion by laying hens. Vet Hum Toxicol. 1998;40(5):273–275.
Crowell M, Eason C, Hix S, et al. First generation anticoagulant rodenticide persistence in large mammals and implications for wildlife management. N Z J Zool. 2013;40(3):205–216.
Eason CT, Wickstrom M. Vertebrate Pesticide Toxicology Manual (Poisons). New Zealand Department of Conservation; 2001. Department of Conservation Technical Series 23.
Robinson MH, Twigg LE, Wheeler SH, Martin GR. Effect of the anticoagulant, pindone, on the breeding performance and survival of merino sheep, Ovis aries. Comp Biochem Physiol B Biochem Mol Biol. 2005;140(3):465–473.
Nelson PC, Hickling GJ. Pindone for rabbit control: efficacy, residues and cost. In: Proceedings of the 16th Vertebrate Pest Conference. University of California Division of Agriculture and Natural Resources; 1994. Accessed July 15, 2021. https://escholarship.org/uc/item/59v456tw
Fisher P. Persistence of Residual Diphacinone Concentrations in Pig Tissues Following Sublethal Exposure. New Zealand Department of Conservation; 2006. Department of Conservation Research and Development Series 249.
Pitt WC, Higashi M, Primus TM. The effect of cooking on diphacinone residues related to human consumption of feral pig tissues. Food Chem Toxicol. 2011;49(9):2030–2034.
Bullard RW, Thompson RD, Holguin G. Diphenadione residues in tissues of cattle. J Agric Food Chem. 1976;24(2):261–263.
Bullard RW, Thompson RD, Kilburn SR. Diphenadione residues in milk of cattle. J Agric Food Chem. 1976;25(1):79–81. doi:10.1021/jf60209a042
Del Piero F, Poppenga RH. Chlorophacinone exposure causing an epizootic of acute fatal hemorrhage in lambs. J Vet Diagn Invest. 2006;18(5):483–485.
Caravati EM, Erdman AR, Scharman EJ, et al. Long-acting anticoagulant rodenticide poisoning: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol (Phila). 2007;45(1):1–22.
Eason C, Milne L, Potts M, et al. Secondary and tertiary poisoning risks associated with brodifacoum. N Z J Ecol. 1999;23(2):219–224.
Godfreyi MER, Laas FJ, Rammell CG. Acute toxicity of brodifacoum to sheep. N Z J Crop Hortic Sci. 1985;13(1):23–25.
Tomlin C. The Pesticide Manual: A World Compendium. 15th ed. British Crop Production Council; 2009.
Regnery J, Parrhysius P, Schulz RS, et al. Wastewater-borne exposure of limnic fish to anticoagulant rodenticides. Water Res. 2019;167:115090. doi:10.1016/j.watres.2019.115090
Riegerix RC, Tanner M, Gale R, Tillitt DE. Acute toxicity and clotting times of anticoagulant rodenticides to red-toothed (Odonus niger) and black (Melichthys niger) triggerfish, fathead minnow (Pimephales promelas), and largemouth bass (Micropterus salmoides). Aquat Toxicol. 2020;221:105429. doi:10.1016/j.aquatox.2020.105429
Laas FJ, Forss DA, Godfreyi MER. Retention of brodifacoum in sheep tissues and excretion in faeces. N Z J Agric Res. 1985;28(3):357–359.
Fisher P. Residual concentrations and persistence of the anticoagulant rodenticides brodifacoum and diphacinone in fauna. PhD thesis. Lincoln University; 2009.
Askham LR. Anticoagulant translocation and plant residue studies in crops. In: Proceedings of the Vertebrate Pest Conference. University of California San Diego; 1986:133–139. Accessed July 15, 2021. https://escholarship.org/uc/item/6rp3d5jq
Johnson R, Friendship R. Rodenticide ingestion in swine: a project to assist veterinarians with detection and establishing possible withdrawal times. In: Proceedings of the 33rd Centralia Swine Research Update. Ontario Ministry of Agriculture, Food, and Rural Affairs; 2014.
Enouri S, Dekroon K, Friendship R, Schrier N, Dowling PM, Johnson R. Depletion of bromadiolone in tissues of hogs following oral exposure. J Swine Health Prod. 2015;23(6):298–305.
Giorgi M, Chiellini M, Mengozzi G. Novel HPLC method for the determination of bromadiolone in chicken eggs. J Vet Pharmacol Ther. 2009;32:132–133.
Giorgi M, Mengozzi G. An HPLC method for the determination of bromadiolone plasma kinetics and its residues in hen eggs. J Chromatogr Sci. 2010;48(9):714–720.
Lund M, Green M. Determination of residues in eggs from white leghorn hens fed bromadiolone rat bait. Int Pest Control. 1992;34(3):84–85.
Johnson AL. Reproduction in the female. In: Scanes CG, ed. Sturkie’s Avian Physiology. 6th ed. Academic Press; 2015:635–665.
Vandenbroucke V, Bousquet-Melou A, De Backer P, Croubels S. Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J Vet Pharmacol Ther. 2008;31(5):437–445.
Eadsforth CV, Gray A, Huckle KR, Inglesfield C. The dietary toxicity of flocoumafen to hens: elimination and accumulation following repeated oral administration. Pest Manag Sci. 1993;38(1):17–25.
Huckle KR, Warburton PA, Forbes S, Logan CJ. Studies on the fate of flocoumafen in the Japanese quail (Coturnix coturnix japonica). Xenobiotica. 1989;19(1):51–62.
Coppock R. Advisory: bromethalin rodenticide – no known antidote. Can Vet J. 2013;54(6):557–558.
Lehner A, Bokhart M, Johnson M, Buchweitz J. Characterization of bromethalin and its degradation products in veterinary toxicology samples by GC-MS-MS. J Anal Toxicol. 2019;43(2):112–125.
DeClementi C, Sobczak BR. Common rodenticide toxicoses in small animals. Vet Clin North Am Small Anim Pract. 2018;48(6):1027–1038.
Gupta RC. Non-anticoagulant rodenticides. In: Gupta RC, ed. Veterinary Toxicology. 3rd ed. Academic Press; 2018:613–626.
van Lier RB, Cherry LD. The toxicity and mechanism of action of bromethalin: a new single-feeding rodenticide. Fundam Appl Toxicol. 1988;11(4):664–672.
EPA U. Reregistration Eligibility Decision Document - Rodenticide Cluster. USEPA; 2003:39. Accessed June 17, 2020. : https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_G-69_1-Sep-97.pdf
Dorman DC. Toxicology of selected pesticides, drugs, and chemicals. Anticoagulant, cholecalciferol, and bromethalin-based rodenticides. Vet Clin North Am Small Anim Pract. 1990;20(2):339–352.
Chen W, Wang R, Chen B, et al. The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med. 2014;20(2):184–192.
Harrington DD, Page EH. Acute vitamin D3 toxicosis in horses: case reports and experimental studies of the comparative toxicity of vitamins D2 and D3. J Am Vet Med Assoc. 1983;182(12):1358–1369.
de Brito Galvão JF, Schenck PA, Chew DJ. A quick reference on hypercalcemia. Vet Clin North Am Small Anim Pract. 2017;47(2):241–248.
Swenson J, Bradley GA. Suspected cholecalciferol rodenticide toxicosis in avian species at a zoological institution. J Avian Med Surg. 2013;27(2):136–147.
The Use of Zinc Phosphide in Wildlife Damage Management. USDA-APHIS; 2019. Accessed June 20, 2021. https://www.aphis.usda.gov/wildlife_damage/nepa/risk_assessment/10-zinc-phosphide.pdf
CDC. Occupational phosphine gas poisoning at veterinary hospitals from dogs that ingested zinc phosphide–Michigan, Iowa, and Washington, 2006–2011. MMWR Morb Mortal Wkly Rep. 2012;61(16):286–288.
Wood D, Webster E, Martinez D, Dargan P, Jones A. Case report: survival after deliberate strychnine self-poisoning, with toxicokinetic data. Crit Care. 2002;6(5):456–459.
Advertisement