• 1.

    Damin-Pernik M, Espana B, Lefebvre S, et al. Management of rodent populations by anticoagulant rodenticides: toward third-generation anticoagulant rodenticides. Drug Metab Dispos. 2017;45(2):160165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Thijssen HHW. Warfarin-based rodenticides: mode of action and mechanism of resistance. Pest Manag Sci. 1995;43(1):7378.

  • 3.

    Lattard V, Benoit E. The stereoisomerism of second generation anticoagulant rodenticides: a way to improve this class of molecules to meet the requirements of society? Pest Manag Sci. 2019;75(4):887892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Dalefield R. Vertebrate pesticides. In: Dalefield R, ed. Veterinary Toxicology for Australia and New Zealand. Elsevier; 2017:119145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Murphy MJ. Anticoagulant rodenticides. In: Gupta RC, ed. Veterinary Toxicology: Basic and Clinical Principles. Elsevier; 2018:583612.

    • Search Google Scholar
    • Export Citation
  • 6.

    Pesticide product and label system. US Environmental Protection Agency. Accessed July 15, 2021. https://iaspub.epa.gov/apex/pesticides/f?p=PPLS:1

    • Search Google Scholar
    • Export Citation
  • 7.

    Chetot T, Taufana S, Benoit E, Lattard V. Vitamin K antagonist rodenticides display different teratogenic activity. Reprod Toxicol. 2020;93:131136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lao W, Gan J. Enantioselective degradation of warfarin in soils. Chirality. 2012;24(1):5459.

  • 9.

    Mcleod L, Saunders G. Pesticides Used in the Management of Vertebrate Pests in Australia: A Review. NSW Department of Primary Industries; 2013.

    • Search Google Scholar
    • Export Citation
  • 10.

    Mogi M, Toda A, Iwasaki K, et al. Simultaneous pharmacokinetics assessment of caffeine, warfarin, omeprazole, metoprolol, and midazolam intravenously or orally administered to microminipigs. J Toxicol Sci. 2012;37(6):11571164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Crespo RF, Fernández SS, de Anda López D, Velarde FI, Anaya RM. Intramuscular inoculation of cattle with warfarin: a new technique for control of vampire bats. Bull Pan Am Health Organ. 1979;13(2):147161.

    • Search Google Scholar
    • Export Citation
  • 12.

    Berny PJ, de Oliveira LA, Videmann B, Rossi S. Assessment of ruminal degradation, oral bioavailability, and toxic effects of anticoagulant rodenticides in sheep. Am J Vet Res. 2006;67(2):363371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Nakayama SMM, Morita A, Ikenaka Y, Mizukawa H, Ishizuka M. A review: poisoning by anticoagulant rodenticides in non-target animals globally. J Vet Med Sci. 2019;81(2):298313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Watanabe KP, Kawata M, Ikenaka Y, et al. Cytochrome P450–mediated warfarin metabolic ability is not a critical determinant of warfarin sensitivity in avian species: in vitro assays in several birds and in vivo assays in chicken. Environ Toxicol Chem. 2015;34(10):23282334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kammerer M, Pouliquen H, Pinault L, Loyau M. Residues depletion in egg after warfarin ingestion by laying hens. Vet Hum Toxicol. 1998;40(5):273275.

    • Search Google Scholar
    • Export Citation
  • 16.

    Crowell M, Eason C, Hix S, et al. First generation anticoagulant rodenticide persistence in large mammals and implications for wildlife management. N Z J Zool. 2013;40(3):205216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Eason CT, Wickstrom M. Vertebrate Pesticide Toxicology Manual (Poisons). New Zealand Department of Conservation; 2001. Department of Conservation Technical Series 23.

    • Search Google Scholar
    • Export Citation
  • 18.

    Robinson MH, Twigg LE, Wheeler SH, Martin GR. Effect of the anticoagulant, pindone, on the breeding performance and survival of merino sheep, Ovis aries. Comp Biochem Physiol B Biochem Mol Biol. 2005;140(3):465473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Nelson PC, Hickling GJ. Pindone for rabbit control: efficacy, residues and cost. In: Proceedings of the 16th Vertebrate Pest Conference. University of California Division of Agriculture and Natural Resources; 1994. Accessed July 15, 2021. https://escholarship.org/uc/item/59v456tw

    • Search Google Scholar
    • Export Citation
  • 20.

    Fisher P. Persistence of Residual Diphacinone Concentrations in Pig Tissues Following Sublethal Exposure. New Zealand Department of Conservation; 2006. Department of Conservation Research and Development Series 249.

    • Search Google Scholar
    • Export Citation
  • 21.

    Pitt WC, Higashi M, Primus TM. The effect of cooking on diphacinone residues related to human consumption of feral pig tissues. Food Chem Toxicol. 2011;49(9):20302034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bullard RW, Thompson RD, Holguin G. Diphenadione residues in tissues of cattle. J Agric Food Chem. 1976;24(2):261263.

  • 23.

    Bullard RW, Thompson RD, Kilburn SR. Diphenadione residues in milk of cattle. J Agric Food Chem. 1976;25(1):7981. doi:10.1021/jf60209a042

  • 24.

    Del Piero F, Poppenga RH. Chlorophacinone exposure causing an epizootic of acute fatal hemorrhage in lambs. J Vet Diagn Invest. 2006;18(5):483485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Caravati EM, Erdman AR, Scharman EJ, et al. Long-acting anticoagulant rodenticide poisoning: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol (Phila). 2007;45(1):122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Eason C, Milne L, Potts M, et al. Secondary and tertiary poisoning risks associated with brodifacoum. N Z J Ecol. 1999;23(2):219224.

  • 27.

    Godfreyi MER, Laas FJ, Rammell CG. Acute toxicity of brodifacoum to sheep. N Z J Crop Hortic Sci. 1985;13(1):2325.

  • 28.

    Tomlin C. The Pesticide Manual: A World Compendium. 15th ed. British Crop Production Council; 2009.

  • 29.

    Regnery J, Parrhysius P, Schulz RS, et al. Wastewater-borne exposure of limnic fish to anticoagulant rodenticides. Water Res. 2019;167:115090. doi:10.1016/j.watres.2019.115090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Riegerix RC, Tanner M, Gale R, Tillitt DE. Acute toxicity and clotting times of anticoagulant rodenticides to red-toothed (Odonus niger) and black (Melichthys niger) triggerfish, fathead minnow (Pimephales promelas), and largemouth bass (Micropterus salmoides). Aquat Toxicol. 2020;221:105429. doi:10.1016/j.aquatox.2020.105429

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Laas FJ, Forss DA, Godfreyi MER. Retention of brodifacoum in sheep tissues and excretion in faeces. N Z J Agric Res. 1985;28(3):357359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Fisher P. Residual concentrations and persistence of the anticoagulant rodenticides brodifacoum and diphacinone in fauna. PhD thesis. Lincoln University; 2009.

    • Search Google Scholar
    • Export Citation
  • 33.

    Askham LR. Anticoagulant translocation and plant residue studies in crops. In: Proceedings of the Vertebrate Pest Conference. University of California San Diego; 1986:133139. Accessed July 15, 2021. https://escholarship.org/uc/item/6rp3d5jq

    • Search Google Scholar
    • Export Citation
  • 34.

    Johnson R, Friendship R. Rodenticide ingestion in swine: a project to assist veterinarians with detection and establishing possible withdrawal times. In: Proceedings of the 33rd Centralia Swine Research Update. Ontario Ministry of Agriculture, Food, and Rural Affairs; 2014.

    • Search Google Scholar
    • Export Citation
  • 35.

    Enouri S, Dekroon K, Friendship R, Schrier N, Dowling PM, Johnson R. Depletion of bromadiolone in tissues of hogs following oral exposure. J Swine Health Prod. 2015;23(6):298305.

    • Search Google Scholar
    • Export Citation
  • 36.

    Giorgi M, Chiellini M, Mengozzi G. Novel HPLC method for the determination of bromadiolone in chicken eggs. J Vet Pharmacol Ther. 2009;32:132133.

    • Search Google Scholar
    • Export Citation
  • 37.

    Giorgi M, Mengozzi G. An HPLC method for the determination of bromadiolone plasma kinetics and its residues in hen eggs. J Chromatogr Sci. 2010;48(9):714720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Lund M, Green M. Determination of residues in eggs from white leghorn hens fed bromadiolone rat bait. Int Pest Control. 1992;34(3):8485.

    • Search Google Scholar
    • Export Citation
  • 39.

    Johnson AL. Reproduction in the female. In: Scanes CG, ed. Sturkie’s Avian Physiology. 6th ed. Academic Press; 2015:635665.

  • 40.

    Vandenbroucke V, Bousquet-Melou A, De Backer P, Croubels S. Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J Vet Pharmacol Ther. 2008;31(5):437445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Eadsforth CV, Gray A, Huckle KR, Inglesfield C. The dietary toxicity of flocoumafen to hens: elimination and accumulation following repeated oral administration. Pest Manag Sci. 1993;38(1):1725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Huckle KR, Warburton PA, Forbes S, Logan CJ. Studies on the fate of flocoumafen in the Japanese quail (Coturnix coturnix japonica). Xenobiotica. 1989;19(1):5162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Coppock R. Advisory: bromethalin rodenticide – no known antidote. Can Vet J. 2013;54(6):557558.

  • 44.

    Lehner A, Bokhart M, Johnson M, Buchweitz J. Characterization of bromethalin and its degradation products in veterinary toxicology samples by GC-MS-MS. J Anal Toxicol. 2019;43(2):112125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    DeClementi C, Sobczak BR. Common rodenticide toxicoses in small animals. Vet Clin North Am Small Anim Pract. 2018;48(6):10271038.

  • 46.

    Gupta RC. Non-anticoagulant rodenticides. In: Gupta RC, ed. Veterinary Toxicology. 3rd ed. Academic Press; 2018:613626.

  • 47.

    van Lier RB, Cherry LD. The toxicity and mechanism of action of bromethalin: a new single-feeding rodenticide. Fundam Appl Toxicol. 1988;11(4):664672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    EPA U. Reregistration Eligibility Decision Document - Rodenticide Cluster. USEPA; 2003:39. Accessed June 17, 2020. : https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_G-69_1-Sep-97.pdf

    • Search Google Scholar
    • Export Citation
  • 49.

    Dorman DC. Toxicology of selected pesticides, drugs, and chemicals. Anticoagulant, cholecalciferol, and bromethalin-based rodenticides. Vet Clin North Am Small Anim Pract. 1990;20(2):339352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Chen W, Wang R, Chen B, et al. The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med. 2014;20(2):184192.

  • 51.

    Harrington DD, Page EH. Acute vitamin D3 toxicosis in horses: case reports and experimental studies of the comparative toxicity of vitamins D2 and D3. J Am Vet Med Assoc. 1983;182(12):13581369.

    • Search Google Scholar
    • Export Citation
  • 52.

    de Brito Galvão JF, Schenck PA, Chew DJ. A quick reference on hypercalcemia. Vet Clin North Am Small Anim Pract. 2017;47(2):241248.

  • 53.

    Swenson J, Bradley GA. Suspected cholecalciferol rodenticide toxicosis in avian species at a zoological institution. J Avian Med Surg. 2013;27(2):136147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    The Use of Zinc Phosphide in Wildlife Damage Management. USDA-APHIS; 2019. Accessed June 20, 2021. https://www.aphis.usda.gov/wildlife_damage/nepa/risk_assessment/10-zinc-phosphide.pdf

    • Search Google Scholar
    • Export Citation
  • 55.

    CDC. Occupational phosphine gas poisoning at veterinary hospitals from dogs that ingested zinc phosphide–Michigan, Iowa, and Washington, 2006–2011. MMWR Morb Mortal Wkly Rep. 2012;61(16):286288.

    • Search Google Scholar
    • Export Citation
  • 56.

    Wood D, Webster E, Martinez D, Dargan P, Jones A. Case report: survival after deliberate strychnine self-poisoning, with toxicokinetic data. Crit Care. 2002;6(5):456459.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Mechanisms of toxicity and residue considerations of rodenticide exposure in food Animals—a FARAD perspective

Melissa A. MercerFood Animal Residue Avoidance and Databank Program (FARAD), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA

Search for other papers by Melissa A. Mercer in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Jennifer L. DavisFood Animal Residue Avoidance and Databank Program (FARAD), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA

Search for other papers by Jennifer L. Davis in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Jim E. RiviereFARAD, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
FARAD, 1DATA Consortium and Department of Mathematics, College of Arts and Sciences, Kansas State University-Olathe, Olathe, KS

Search for other papers by Jim E. Riviere in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Ronald E. BaynesFARAD, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC

Search for other papers by Ronald E. Baynes in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Lisa A. TellFARAD, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA

Search for other papers by Lisa A. Tell in
Current site
Google Scholar
PubMed
Close
 DVM
,
Majid Jaberi-DourakiFARAD, 1DATA Consortium and Department of Mathematics, College of Arts and Sciences, Kansas State University-Olathe, Olathe, KS

Search for other papers by Majid Jaberi-Douraki in
Current site
Google Scholar
PubMed
Close
 PhD
,
Fiona P. MaunsellFARAD, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL

Search for other papers by Fiona P. Maunsell in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Zhoumeng LinFARAD, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL

Search for other papers by Zhoumeng Lin in
Current site
Google Scholar
PubMed
Close
 PhD

Contributor Notes

Corresponding author: Dr. Davis (jdavis4@vt.edu)