• 1.

    Damin-Pernik M, Espana B, Lefebvre S, et al. Management of rodent populations by anticoagulant rodenticides: toward third-generation anticoagulant rodenticides. Drug Metab Dispos. 2017;45(2):160165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Thijssen HHW. Warfarin-based rodenticides: mode of action and mechanism of resistance. Pest Manag Sci. 1995;43(1):7378.

  • 3.

    Lattard V, Benoit E. The stereoisomerism of second generation anticoagulant rodenticides: a way to improve this class of molecules to meet the requirements of society? Pest Manag Sci. 2019;75(4):887892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Dalefield R. Vertebrate pesticides. In: Dalefield R, ed. Veterinary Toxicology for Australia and New Zealand. Elsevier; 2017:119145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Murphy MJ. Anticoagulant rodenticides. In: Gupta RC, ed. Veterinary Toxicology: Basic and Clinical Principles. Elsevier; 2018:583612.

    • Search Google Scholar
    • Export Citation
  • 6.

    Pesticide product and label system. US Environmental Protection Agency. Accessed July 15, 2021. https://iaspub.epa.gov/apex/pesticides/f?p=PPLS:1

    • Search Google Scholar
    • Export Citation
  • 7.

    Chetot T, Taufana S, Benoit E, Lattard V. Vitamin K antagonist rodenticides display different teratogenic activity. Reprod Toxicol. 2020;93:131136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lao W, Gan J. Enantioselective degradation of warfarin in soils. Chirality. 2012;24(1):5459.

  • 9.

    Mcleod L, Saunders G. Pesticides Used in the Management of Vertebrate Pests in Australia: A Review. NSW Department of Primary Industries; 2013.

    • Search Google Scholar
    • Export Citation
  • 10.

    Mogi M, Toda A, Iwasaki K, et al. Simultaneous pharmacokinetics assessment of caffeine, warfarin, omeprazole, metoprolol, and midazolam intravenously or orally administered to microminipigs. J Toxicol Sci. 2012;37(6):11571164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Crespo RF, Fernández SS, de Anda López D, Velarde FI, Anaya RM. Intramuscular inoculation of cattle with warfarin: a new technique for control of vampire bats. Bull Pan Am Health Organ. 1979;13(2):147161.

    • Search Google Scholar
    • Export Citation
  • 12.

    Berny PJ, de Oliveira LA, Videmann B, Rossi S. Assessment of ruminal degradation, oral bioavailability, and toxic effects of anticoagulant rodenticides in sheep. Am J Vet Res. 2006;67(2):363371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Nakayama SMM, Morita A, Ikenaka Y, Mizukawa H, Ishizuka M. A review: poisoning by anticoagulant rodenticides in non-target animals globally. J Vet Med Sci. 2019;81(2):298313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Watanabe KP, Kawata M, Ikenaka Y, et al. Cytochrome P450–mediated warfarin metabolic ability is not a critical determinant of warfarin sensitivity in avian species: in vitro assays in several birds and in vivo assays in chicken. Environ Toxicol Chem. 2015;34(10):23282334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kammerer M, Pouliquen H, Pinault L, Loyau M. Residues depletion in egg after warfarin ingestion by laying hens. Vet Hum Toxicol. 1998;40(5):273275.

    • Search Google Scholar
    • Export Citation
  • 16.

    Crowell M, Eason C, Hix S, et al. First generation anticoagulant rodenticide persistence in large mammals and implications for wildlife management. N Z J Zool. 2013;40(3):205216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Eason CT, Wickstrom M. Vertebrate Pesticide Toxicology Manual (Poisons). New Zealand Department of Conservation; 2001. Department of Conservation Technical Series 23.

    • Search Google Scholar
    • Export Citation
  • 18.

    Robinson MH, Twigg LE, Wheeler SH, Martin GR. Effect of the anticoagulant, pindone, on the breeding performance and survival of merino sheep, Ovis aries. Comp Biochem Physiol B Biochem Mol Biol. 2005;140(3):465473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Nelson PC, Hickling GJ. Pindone for rabbit control: efficacy, residues and cost. In: Proceedings of the 16th Vertebrate Pest Conference. University of California Division of Agriculture and Natural Resources; 1994. Accessed July 15, 2021. https://escholarship.org/uc/item/59v456tw

    • Search Google Scholar
    • Export Citation
  • 20.

    Fisher P. Persistence of Residual Diphacinone Concentrations in Pig Tissues Following Sublethal Exposure. New Zealand Department of Conservation; 2006. Department of Conservation Research and Development Series 249.

    • Search Google Scholar
    • Export Citation
  • 21.

    Pitt WC, Higashi M, Primus TM. The effect of cooking on diphacinone residues related to human consumption of feral pig tissues. Food Chem Toxicol. 2011;49(9):20302034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bullard RW, Thompson RD, Holguin G. Diphenadione residues in tissues of cattle. J Agric Food Chem. 1976;24(2):261263.

  • 23.

    Bullard RW, Thompson RD, Kilburn SR. Diphenadione residues in milk of cattle. J Agric Food Chem. 1976;25(1):7981. doi:10.1021/jf60209a042

  • 24.

    Del Piero F, Poppenga RH. Chlorophacinone exposure causing an epizootic of acute fatal hemorrhage in lambs. J Vet Diagn Invest. 2006;18(5):483485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Caravati EM, Erdman AR, Scharman EJ, et al. Long-acting anticoagulant rodenticide poisoning: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol (Phila). 2007;45(1):122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Eason C, Milne L, Potts M, et al. Secondary and tertiary poisoning risks associated with brodifacoum. N Z J Ecol. 1999;23(2):219224.

  • 27.

    Godfreyi MER, Laas FJ, Rammell CG. Acute toxicity of brodifacoum to sheep. N Z J Crop Hortic Sci. 1985;13(1):2325.

  • 28.

    Tomlin C. The Pesticide Manual: A World Compendium. 15th ed. British Crop Production Council; 2009.

  • 29.

    Regnery J, Parrhysius P, Schulz RS, et al. Wastewater-borne exposure of limnic fish to anticoagulant rodenticides. Water Res. 2019;167:115090. doi:10.1016/j.watres.2019.115090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Riegerix RC, Tanner M, Gale R, Tillitt DE. Acute toxicity and clotting times of anticoagulant rodenticides to red-toothed (Odonus niger) and black (Melichthys niger) triggerfish, fathead minnow (Pimephales promelas), and largemouth bass (Micropterus salmoides). Aquat Toxicol. 2020;221:105429. doi:10.1016/j.aquatox.2020.105429

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Laas FJ, Forss DA, Godfreyi MER. Retention of brodifacoum in sheep tissues and excretion in faeces. N Z J Agric Res. 1985;28(3):357359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Fisher P. Residual concentrations and persistence of the anticoagulant rodenticides brodifacoum and diphacinone in fauna. PhD thesis. Lincoln University; 2009.

    • Search Google Scholar
    • Export Citation
  • 33.

    Askham LR. Anticoagulant translocation and plant residue studies in crops. In: Proceedings of the Vertebrate Pest Conference. University of California San Diego; 1986:133139. Accessed July 15, 2021. https://escholarship.org/uc/item/6rp3d5jq

    • Search Google Scholar
    • Export Citation
  • 34.

    Johnson R, Friendship R. Rodenticide ingestion in swine: a project to assist veterinarians with detection and establishing possible withdrawal times. In: Proceedings of the 33rd Centralia Swine Research Update. Ontario Ministry of Agriculture, Food, and Rural Affairs; 2014.

    • Search Google Scholar
    • Export Citation
  • 35.

    Enouri S, Dekroon K, Friendship R, Schrier N, Dowling PM, Johnson R. Depletion of bromadiolone in tissues of hogs following oral exposure. J Swine Health Prod. 2015;23(6):298305.

    • Search Google Scholar
    • Export Citation
  • 36.

    Giorgi M, Chiellini M, Mengozzi G. Novel HPLC method for the determination of bromadiolone in chicken eggs. J Vet Pharmacol Ther. 2009;32:132133.

    • Search Google Scholar
    • Export Citation
  • 37.

    Giorgi M, Mengozzi G. An HPLC method for the determination of bromadiolone plasma kinetics and its residues in hen eggs. J Chromatogr Sci. 2010;48(9):714720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Lund M, Green M. Determination of residues in eggs from white leghorn hens fed bromadiolone rat bait. Int Pest Control. 1992;34(3):8485.

    • Search Google Scholar
    • Export Citation
  • 39.

    Johnson AL. Reproduction in the female. In: Scanes CG, ed. Sturkie’s Avian Physiology. 6th ed. Academic Press; 2015:635665.

  • 40.

    Vandenbroucke V, Bousquet-Melou A, De Backer P, Croubels S. Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J Vet Pharmacol Ther. 2008;31(5):437445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Eadsforth CV, Gray A, Huckle KR, Inglesfield C. The dietary toxicity of flocoumafen to hens: elimination and accumulation following repeated oral administration. Pest Manag Sci. 1993;38(1):1725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Huckle KR, Warburton PA, Forbes S, Logan CJ. Studies on the fate of flocoumafen in the Japanese quail (Coturnix coturnix japonica). Xenobiotica. 1989;19(1):5162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Coppock R. Advisory: bromethalin rodenticide – no known antidote. Can Vet J. 2013;54(6):557558.

  • 44.

    Lehner A, Bokhart M, Johnson M, Buchweitz J. Characterization of bromethalin and its degradation products in veterinary toxicology samples by GC-MS-MS. J Anal Toxicol. 2019;43(2):112125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    DeClementi C, Sobczak BR. Common rodenticide toxicoses in small animals. Vet Clin North Am Small Anim Pract. 2018;48(6):10271038.

  • 46.

    Gupta RC. Non-anticoagulant rodenticides. In: Gupta RC, ed. Veterinary Toxicology. 3rd ed. Academic Press; 2018:613626.

  • 47.

    van Lier RB, Cherry LD. The toxicity and mechanism of action of bromethalin: a new single-feeding rodenticide. Fundam Appl Toxicol. 1988;11(4):664672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    EPA U. Reregistration Eligibility Decision Document - Rodenticide Cluster. USEPA; 2003:39. Accessed June 17, 2020. : https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_G-69_1-Sep-97.pdf

    • Search Google Scholar
    • Export Citation
  • 49.

    Dorman DC. Toxicology of selected pesticides, drugs, and chemicals. Anticoagulant, cholecalciferol, and bromethalin-based rodenticides. Vet Clin North Am Small Anim Pract. 1990;20(2):339352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Chen W, Wang R, Chen B, et al. The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med. 2014;20(2):184192.

  • 51.

    Harrington DD, Page EH. Acute vitamin D3 toxicosis in horses: case reports and experimental studies of the comparative toxicity of vitamins D2 and D3. J Am Vet Med Assoc. 1983;182(12):13581369.

    • Search Google Scholar
    • Export Citation
  • 52.

    de Brito Galvão JF, Schenck PA, Chew DJ. A quick reference on hypercalcemia. Vet Clin North Am Small Anim Pract. 2017;47(2):241248.

  • 53.

    Swenson J, Bradley GA. Suspected cholecalciferol rodenticide toxicosis in avian species at a zoological institution. J Avian Med Surg. 2013;27(2):136147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    The Use of Zinc Phosphide in Wildlife Damage Management. USDA-APHIS; 2019. Accessed June 20, 2021. https://www.aphis.usda.gov/wildlife_damage/nepa/risk_assessment/10-zinc-phosphide.pdf

    • Search Google Scholar
    • Export Citation
  • 55.

    CDC. Occupational phosphine gas poisoning at veterinary hospitals from dogs that ingested zinc phosphide–Michigan, Iowa, and Washington, 2006–2011. MMWR Morb Mortal Wkly Rep. 2012;61(16):286288.

    • Search Google Scholar
    • Export Citation
  • 56.

    Wood D, Webster E, Martinez D, Dargan P, Jones A. Case report: survival after deliberate strychnine self-poisoning, with toxicokinetic data. Crit Care. 2002;6(5):456459.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Mechanisms of toxicity and residue considerations of rodenticide exposure in food Animals—a FARAD perspective

View More View Less
  • 1 Food Animal Residue Avoidance and Databank Program (FARAD), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
  • | 2 FARAD, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
  • | 3 FARAD, 1DATA Consortium and Department of Mathematics, College of Arts and Sciences, Kansas State University-Olathe, Olathe, KS
  • | 4 FARAD, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA
  • | 5 FARAD, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL
  • | 6 FARAD, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL

Contributor Notes

Corresponding author: Dr. Davis (jdavis4@vt.edu)