• 1.

    Plantinga EA, Bosch G, Hendriks WH. Estimation of the dietary nutrient profile of free roaming feral cats: possible implications for nutrition of domestic cats. Br J Nutr. 2011;106(suppl 1):S35S48. doi:10.1017/S0007114511002285

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Zoran DL. The carnivore connection to nutrition in cats. J Am Vet Med Assoc. 2002;221(11):15591567. doi:10.2460/javma.2002.221.1559

  • 3.

    Zoran DL, Rand JS. The role of diet in the prevention and management of feline diabetes. Vet Clin North Am Small Anim Pract. 2013;43(2):233243. doi:10.1016/j.cvsm.2012.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Kremen NA, Calvert CC, Larsen JA, Baldwin RA, Hahn TP, Fascetti AJ. Body composition and amino acid concentrations of select birds and mammals consumed by cats in northern and central California. J Anim Sci. 2013;91(3):12701276. doi:10.2527/jas.2011-4503

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Backus RC, Thomas DG, Fritsche KL. Comparison of inferred fractions of n-3 and n-6 polyunsaturated fatty acids in feral domestic cat diets with those in commercial feline extruded diets. Am J Vet Res. 2013;74(4):589597. doi:10.2460/ajvr.74.4.589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Davies M, Alborough R, Jones L, Davis C, Williams C, Gardner DS. Mineral analysis of complete dog and cat foods in the UK and compliance with European guidelines. Sci Rep. 2017;7:17107 doi:10.1038/s41598-017-17159-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Verbrugghe A, Hesta M. Cats and carbohydrates: the carnivore fantasy? Vet Sci. 2017;4(4):55 doi:10.3390/vetsci4040055

  • 8.

    de-Oliveira LD, Carciofi AC, Oliveira MC, et al. Effects of six carbohydrate sources on cat diet digestibility and postprandial glucose and insulin response. J Anim Sci. 2008;86(9):22372246. doi:10.2527/jas.2007-0354

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Laflamme DP, Izquierdo O, Eirmann LA, Binder S. Myths and misperceptions about ingredients used in pet foods. Vet Clin North Am Small Anim Pract. 2014;44(4):689698. doi:10.1016/j.cvsm.2014.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Laflamme DP, Abood SK, Fascetti AJ, et al. Pet feeding practices of dog and cat owners in the United States and Australia. J Am Vet Med Assoc. 2008;232(5):687694. doi:10.2460/javma.232.5.687

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Sallander M, Eliasson J, Hedhammar A. Prevalence and risk factors for the development of diabetes mellitus in Swedish cats. Acta Vet Scand. 2012;54(1):61 doi:10.1186/1751-0147-54-61

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Rowe EC, Browne WJ, Casey RA, Gruffydd-Jones TJ, Murray JK. Early-life risk factors identified for owner-reported feline overweight and obesity at around two years of age. Prev Vet Med. 2017;143:3948. doi:10.1016/j.prevetmed.2017.05.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Okin GS. Environmental impacts of food consumption by dogs and cats. PLoS One. 2017;12(8):e0181301 doi:10.1371/journal.pone.0181301

  • 14.

    Morris JG, Trudell J, Pencovic T. Carbohydrate digestion by the domestic cat (Felis catus). Br J Nutr. 1977;37(3):365373. doi:10.1079/bjn19770040

  • 15.

    Kienzle E. Carbohydrate metabolism of the cat. 2. Digestion of starch. J Anim Physiol Anim Nutr (Berl). 1993;69(1–5):102114. doi:10.1111/j.1439–0396.1993.tb00794.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Kienzle E. Effect of carbohydrates on digestion in the cat. J Nutr. 1994;124(suppl 12)2568S2571S. doi:10.1093/jn/124.suppl_12.2568S

  • 17.

    Kienzle E. Blood sugar levels and renal sugar excretion after the intake of high carbohydrate diets in cats. J Nutr. 1994;124(suppl 12)2563S2567S. doi:10.1093/jn/124.suppl_12.2563S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Crane SW, Cowell CS, Stout NP, et al. Commercial pet foods In: Hand M, Thatcher CD, Remillard RL, Roudebush P, Novotny BJ, eds. Small Animal Clinical Nutrition. 5th ed. Mark Morris Institute; 2010:157190.

    • Search Google Scholar
    • Export Citation
  • 19.

    MacDonald ML, Rogers QR, Morris JG. Nutrition of the domestic cat, a mammalian carnivore. Annu Rev Nutr. 1984;4:521562. doi:10.1146/annurev.nu.04.070184.002513

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Eisert R. Hypercarnivory and the brain: protein requirements of cats reconsidered. J Comp Physiol B. 2011;181(1):117. doi:10.1007/s00360-010-0528-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    National Research Council. Nutrient Requirements of Dogs and Cats. National Academy Press; 2006. doi:doi.org/10.17226/10668

  • 22.

    Bauer JE. Metabolic basis for the essential nature of fatty acids and the unique dietary fatty acid requirements of cats. J Am Vet Med Assoc. 2006;229(11):17291732. doi:10.2460/javma.229.11.1729

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Strieker MJ, Morris JG, Rogers QR. Increasing dietary crude protein does not increase the essential amino acid requirements of kittens. J Anim Physiol Anim Nutr (Berl). 2006;90(7-8):344353. doi:10.1111/j.1439-0396.2006.00609.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Green AS, Ramsey JJ, Villaverde C, Asami DK, Wei A, Fascetti AJ. Cats are able to adapt protein oxidation to protein intake provided their requirement for dietary protein is met. J Nutr. 2008;138(6):10531060. doi:10.1093/jn/138.6.1053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lester T, Czarnecki-Maulden G, Lewis D. Cats increase fatty acid oxidation when isocalorically fed meat-based diets with increasing fat content. Am J Physiol. 1999;277(3):R878R886. doi:10.1152/ajpregu.1999.277.3.R878

    • Search Google Scholar
    • Export Citation
  • 26.

    Hewson-Hughes AK, Colyer A, Simpson SJ, Raubenheimer D. Balancing macronutrient intake in a mammalian carnivore: disentangling the influences of flavour and nutrition. R Soc Open Sci. 2016;3(6):160081 doi:10.1098/rsos.160081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Wei A, Fascetti AJ, Liu KJ, et al. Influence of a high-protein diet on energy balance in obese cats allowed ad libitum access to food. J Anim Physiol Anim Nutr (Berl). 2011;95(3):359367. doi:10.1111/j.1439-0396.2010.01062.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Allaway D, de Alvaro CH, Hewson-Hughes A, Staunton R, Morris P, Alexander J. Impact of dietary macronutrient profile on feline body weight is not consistent with the protein leverage hypothesis. Br J Nutr. 2018;120(11):13101318. doi:10.1017/S000711451800257X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Hall JA, Vodran JC, Vanchina MA, Jewell DE. When fed foods with similar palatability, healthy adult dogs and cats choose different macronutrient compositions. J Exp Biol. 2018;221(pt 14):jeb173450 doi:10.1242/jeb.173450

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kienzle E. Carbohydrate metabolism of the cat. 1. Activity of amylase in the gastrointestinal tract of the cat. J Anim Physiol Anim Nutr (Berl). 1993;69(1–5):92101. doi:10.1111/j.1439–0396.1993.tb00793.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hore P, Messer M. Studies on disaccharidase activities of the small intestine of the domestic cat and other carnivorous mammals. Comp Biochem Physiol. 1968;24(3):717725. doi:10.1016/0010-406x(68)90785-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kienzle E. Carbohydrate metabolism of the cat. 4. Activity of maltase, isomaltase, sucrase and lactase in the GI tract in relation to age and diet. J Anim Physiol Anim Nutr (Berl). 1993;70(1–5):8996. doi:10.1111/j.1439–0396.1993.tb00310.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Batchelor DJ, Al-Rammahi M, Moran AW, et al. Sodium/glucose cotransporter-1, sweet receptor, and disaccharidase expression in the intestine of the domestic dog and cat: two species of different dietary habit. Am J Physiol Regul Integr Comp Physiol. 2011;300(1):R67R75. doi:10.1152/ajpregu.00262.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Thiess S, Becskei C, Tomsa K, Lutz TA, Wanner M. Effects of high carbohydrate and high fat diet on plasma metabolite levels and on i.v. glucose tolerance test in intact and neutered male cats. J Feline Med Surg. 2004;6(4):207218. doi:10.1016/j.jfms.2003.09.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Carciofi AC, Takakura FS, de-Oliveira LD, et al. Effects of six carbohydrate sources on dog diet digestibility and post-prandial glucose and insulin response. J Anim Physiol Anim Nutr (Berl). 2008;92(3):326336. doi:10.1111/j.1439-0396.2007.00794.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Russell K, Murgatroyd PR, Batt RM. Net protein oxidation is adapted to dietary protein intake in domestic cats (Felis silvestris catus). J Nutr. 2002;132(3):456460. doi:10.1093/jn/132.3.456

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Hoenig M, Thomaseth K, Waldron M, Ferguson DC. Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R227R234. doi:10.1152/ajpregu.00313.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Gooding MA, Flickinger EA, Atkinson JL, Duncan IJH, Shoveller AK. Effects of high-fat and high-carbohydrate diets on fat and carbohydrate oxidation and plasma metabolites in healthy cats. J Anim Physiol Anim Nutr (Berl). 2014;98(3):596607. doi:10.1111/jpn.12126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Miller JC, Calagiuri S. The carnivore connection: dietary carbohydrate in the evolution of NIDDM. Diabetologia. 1994;37(12):12801286. doi:10.1007/BF00399803

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Rand J. Current understanding of feline diabetes: part 1, pathogenesis. J Feline Med Surg. 1999;1(3):143153. doi:10.1016/S1098-612X(99)90203-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Rogers QR, Morris JG, Freedland RA. Lack of hepatic enzymatic adaptation to low and high levels of dietary protein in the adult cats. Enzyme. 1977;22(5):348356. doi:10.1159/000458816

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Kettelhut IC, Foss MC, Migliorini RH. Glucose homeostasis in a carnivorous animal (cat) and in rats fed a high-protein diet. Am J Physiol. 1980;239(5):R437R444. doi:10.1152/ajpregu.1980.239.5.R437

    • Search Google Scholar
    • Export Citation
  • 43.

    Hoenig M, Jordan ET, Glushka J, et al. Effect of macronutrients, age, and obesity on 6- and 24-h postprandial glucose metabolism in cats. Am J Physiol Regul Integr Comp Physiol. 2011;301(6):R1798R1807. doi:10.1152/ajpregu.00342.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Kley S, Hoenig M, Glushka J, et al. The impact of obesity, sex, and diet on hepatic glucose production in cats. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R936R943. doi:10.1152/ajpregu.90771.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Hoenig M. The cat as a model for human obesity and diabetes. J Diabetes Sci Technol. 2012;6(3):525533. doi:10.1177/193229681200600306

  • 46.

    Appleton D, Rand J, Priest J, Sunvold GD, Vicker JR. Dietary carbohydrate source affects glucose concentrations, insulin secretion, and food intake in overweight cats. Nutr Res. 2004;24(6):447467. doi:10.1016/j.nutres.2004.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Backus RC, Cave NJ, Keisler DH. Gonadectomy and high dietary fat but not high dietary carbohydrate induce gains in body weight and fat of domestic cats. Br J Nutr. 2007;98(3):641650. doi:10.1017/S0007114507750869

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Mori A, Sako T, Lee P, et al. Comparison of three commercially available prescription diet regimens on short-term post-prandial serum glucose and insulin concentrations in healthy cats. Vet Res Commun. 2009;33(7):669680. doi:10.1007/s11259-009-9216-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Martin LJ, Siliart B, Lutz TA, Biourge V, Nguyen P, Dumon HJW. Postprandial response of plasma insulin, amylin and acylated ghrelin to various test meals in lean and obese cats. Br J Nutr. 2010;103(11):16101619. doi:10.1017/S000711450999359X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Coradini M, Rand JS, Morton JM, Rawlings JM. Effects of two commercially available feline diets on glucose and insulin concentrations, insulin sensitivity and energetic efficiency of weight gain. Br J Nutr. 2011;106(suppl 1):S64S77. doi:10.1017/S0007114511005046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Hewson-Hughes AK, Gilham MS, Upton S, Colyer A, Butterwick R, Miller AT. The effect of dietary starch level on postprandial glucose and insulin concentrations in cats and dogs. Br J Nutr. 2011;106(suppl 1):S105S109. doi:10.1017/S0007114511001887

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Farrow H, Rand JS, Morton JM, Sunvold G. Postprandial glycaemia in cats fed a moderate carbohydrate meal persists for a median of 12 hours–female cats have higher peak glucose concentrations. J Feline Med Surg. 2012;14(10):706715. doi:10.1177/1098612X12449702

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Farrow HA, Rand JS, Morton JM, O’Leary CA, Sunvold GD. Effect of dietary carbohydrate, fat, and protein on postprandial glycemia and energy intake in cats. J Vet Intern Med. 2013;27(5):11211135. doi:10.1111/jvim.12139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Singh R, Rand JS, Coradini M, Morton JM. Effect of acarbose on postprandial blood glucose concentrations in healthy cats fed low and high carbohydrate diets. J Feline Med Surg. 2015;17(10):848857. doi:10.1177/1098612X14556559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Musco N, Calabro S, Tudisco R, et al. Diet effect on short- and long-term glycaemic response in adult healthy cats. Vet Ital. 2017;53:141145. doi:10.12834/VetIt.57.166.3

    • Search Google Scholar
    • Export Citation
  • 56.

    Wester TJ, Weidgraaf K, Hekman M, Bequette BJ, Cave NJ, Tavendale MH. Upregulation of glucose production by increased dietary protein in the adult cats (Felis catus). FASEB J. 2017;31:792.18792.18. doi:doi.org/10.1096/fasebj.31.1_supplement.792.18

    • Search Google Scholar
    • Export Citation
  • 57.

    Curry DL, Morris JG, Rogers QR, Stern JS. Dynamics of insulin and glucagon secretion by the isolated perfused cat pancreas. Comp Biochem Physiol A Comp Physiol. 1982;72(2):333338. doi:10.1016/0300-9629(82)90228-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Gould RJ, Fioravanti C, Cook PG, Solomon HF. A model of gastric emptying in cats shows solid emptying is promoted by MK-329: a CCK antagonist. J Nucl Med. 1990;31(9):14941499.

    • Search Google Scholar
    • Export Citation
  • 59.

    Backus RC, Rosenquist GL, Rogers QR, Calam J, Morris JG. Elevation of plasma cholecystokinin (CCK) immunoreactivity by fat, protein, and amino acids in the cat, a carnivore. Regul Pept. 1995;57(2):123131. doi:10.1016/0167-0115(95)00027-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Hoenig M, Pach N, Thomaseth K, Devries F, Ferguson DC. Evaluation of long-term glucose homeostasis in lean and obese cats by use of continuous glucose monitoring. Am J Vet Res. 2012;73(7):11001106. doi:10.2460/ajvr.73.7.1100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Leahy JL, Cooper HE, Deal DA, Weir GC. Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J Clin Invest. 1986;77(3):908915. doi:10.1172/JCI112389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahasi H. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52(3):581587. doi:10.2337/diabetes.52.3.581

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Zini E, Osto M, Franchini M, et al. Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat. Diabetologia. 2009;52(2):336346. doi:10.1007/s00125-008-1201-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Cernea S, Dobreanu M. Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochem Med (Zagreb). 2013;23(3):266280. doi:10.11613/bm.2013.033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Haefliger JA, Rohner-Jeanrenaud F, Caille D, Charollais A, Meda P, Allagnat F. Hyperglycemia downregulates Connexin36 in pancreatic islets via the upregulation of ICER-1/ICER-1gamma. J Mol Endocrinol. 2013;51(1):4958. doi:10.1530/JME-13-0054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Gatford KL, De Blasio MJ, How TA, Harland ML, Summers-Pearce BL, Owens JA. Testing the plasticity of insulin secretion and beta-cell function in vivo: responses to chronic hyperglycaemia in the sheep. Exp Physiol. 2012;97(5):663675. doi:10.1113/expphysiol.2011.063560

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Link KR, Allio I, Rand JS, Eppler E. The effect of experimentally induced chronic hyperglycaemia on serum and pancreatic insulin, pancreatic islet IGF-I and plasma and urinary ketones in the domestic cat (Felis felis). Gen Comp Endocrinol. 2013;188:269281. doi:10.1016/j.ygcen.2013.04.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Association of American Feed Control Officials. Official Publication. Association of American Feed Control Officials; 2014:149164.

  • 69.

    Nguyen P, Leray V, Dumon H, et al. High protein intake affects lean body mass but not energy expenditure in nonobese neutered cats. J Nutr. 2004;134(suppl 8)2084S2086S. doi:10.1093/jn/134.8.2084S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Laflamme DP, Hannah SS. Discrepancy between use of lean body mass or nitrogen balance to determine protein requirements for adult cats. J Feline Med Surg. 2013;15(8):691697. doi:10.1177/1098612X12474448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Frank G, Anderson W, Pazak H, Hodgkins E, Ballam J, Laflamme D. Use of a high-protein diet in the management of feline diabetes mellitus. Vet Ther. 2001;2(3):238246.

    • Search Google Scholar
    • Export Citation
  • 72.

    Mazzaferro EM, Greco DS, Turner AS, Fettman MJ. Treatment of feline diabetes mellitus using an alpha-glucosidase inhibitor and a low-carbohydrate diet. J Feline Med Surg. 2003;5(3):183189. doi:10.1016/S1098-612X(03)00006-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Bennett N, Greco D, Peterson M, Kirk C, Mathes M, Fettman MJ. Comparison of a low carbohydrate-low fiber diet and a moderate carbohydrate-high fiber diet in the management of feline diabetes mellitus. J Feline Med Surg. 2006;8(2):7384. doi:10.1016/j.jfms.2005.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Marshall RD, Rand JS, Morton JM. Treatment of newly diagnosed diabetic cats with glargine insulin improves glycaemic control and results in higher probability of remission than protamine zinc and lente insulins. J Feline Med Surg. 2009;11(8):683691. doi:10.1016/j.jfms.2009.05.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Roomp K, Rand J. Intensive blood glucose control is safe and effective in diabetic cats using home monitoring and treatment with glargine. J Feline Med Surg. 2009;11(8):668. doi:10.1016/j.jfms.2009.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Roomp K, Rand J. Evaluation of detemir in diabetic cats managed with a protocol for intensive blood glucose control. J Feline Med Surg. 2012;14(8):566572. doi:10.1177/1098612X12446211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Pereira-Lancha LO, Coelho DF, de Campos-Ferraz PL, Lancha AH. Body fat regulation: Is it a result of a simple energy balance or a high fat intake? J Am Coll Nutr. 2010;29(4):343351. doi:10.1080/07315724.2010.10719850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Nguyen PG, Dumon HJ, Siliart BS, Martin LJ, Serheraert R, Biourge V. Effects of dietary fat and energy on body weight and composition after gonadectomy in cats. Am J Vet Res. 2004;65(12):17081713. doi:10.2460/ajvr.2004.65.1708

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Scarlett JM, Donoghue S, Saidla J, Wills J. Overweight cats: prevalence and risk factors. Int J Obes Relat Metab Disord. 1994;18(suppl 1):S22S28.

    • Search Google Scholar
    • Export Citation
  • 80.

    Lund EM, Armstrong PJ, Kirk CA, Kolar LM, Klausner JS. Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J Am Vet Med Assoc. 1999;214(9):13361341.

    • Search Google Scholar
    • Export Citation
  • 81.

    Scarlett JM, Donoghue S. Associations between body condition and disease in cats. J Am Vet Med Assoc. 1998;212(11):17251731.

  • 82.

    Allan FJ, Pfeiffer DU, Jones BR, Esslemont DH, Wiseman MS. A cross-sectional study of risk factors for obesity in cats in New Zealand. Prev Vet Med. 2000;46(3):183196. doi:10.1016/s0167-5877(00)00147-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Russell K, Sabin R, Holt S, Bradley R, Harper EJ. Influence of feeding regimen on body condition in the cat. J Small Anim Pract. 2000;41(1):1217. doi:10.1111/j.1748-5827.2000.tb03129.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Colliard L, Paragon BM, Lemuet B, Benet JJ, Blanchard G. Prevalence and risk factors of obesity in an urban population of healthy cats. J Feline Med Surg. 2009;11(2):135140. doi:10.1016/j.jfms.2008.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Courcier EA, O’Higgins R, Mellor DJ, Yam PS. Prevalence and risk factors for feline obesity in a first opinion practice in Glasgow, Scotland. J Feline Med Surg. 2010;12(10):746753. doi:10.1016/j.jfms.2010.05.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Cave NJ, Allan FJ, Schokkenbroek SL, Metekohy CAM, Pfeiffer DU. A cross-sectional study to compare changes in the prevalence and risk factors for feline obesity between 1993 and 2007 in New Zealand. Prev Vet Med. 2012;107(1–2):121133. doi:10.1016/j.prevetmed.2012.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Wall M, Cave NJ, Vallee E. Owner and cat-related risk factors for feline overweight or obesity. Front Vet Sci. 2019;6:266 doi:10.3389/fvets.2019.00266

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Buffington CAT. Dry foods and risk of disease in cats: special report. Can Vet J. 2008;49(6):561563.

  • 89.

    McCann TM, Simpson KE, Shaw DJ, Butt JA, Gunn-Moore DA. Feline diabetes mellitus in the UK: the prevalence within an insured cat population and a questionnaire-based putative risk factor analysis. J Feline Med Surg. 2007;9(4):289299. doi:10.1016/j.jfms.2007.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Slingerland LI, Fazilova VV, Plantinga EA, Kooistra HS, Beynen AC. Indoor confinement and physical inactivity rather than the proportion of dry food are risk factors in the development of feline type 2 diabetes mellitus. Vet J. 2009;179(2):247253. doi:10.1016/j.tvjl.2007.08.035

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Evidence does not support the controversy regarding carbohydrates in feline diets

Dorothy P. LaflammeConsultant, Veterinary Communications, Floyd, VA

Search for other papers by Dorothy P. Laflamme in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Robert C. BackusDepartment of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO

Search for other papers by Robert C. Backus in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
S. Dru ForresterHill’s Pet Nutrition, Topeka, KS

Search for other papers by S. Dru Forrester in
Current site
Google Scholar
PubMed
Close
 DVM, MS
, and
Margarethe HoenigDepartment of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL

Search for other papers by Margarethe Hoenig in
Current site
Google Scholar
PubMed
Close
 Dr med vet, PhD
View More View Less

Contributor Notes

Corresponding author: Dr. Laflamme (JunqueDr@yahoo.com)