Hardeland R, Reiter RJ, Poeggeler B, Tan DX. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev. 1993;17(3):347–357.
Stehle JH, Saade A, Rawashdeh O, et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res. 2011;51(1):17–43.
Pévet P. Melatonin in animal models. Dialogues Clin Neurosci. 2003;5(4):343–352.
Liu J, Clough SJ, Hutchinson AJ, Admah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol. 2016;56:361–383.
Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom. 2019;102(2):99–108.
Tosini G, Baba K, Hwang CK, Iuvone PM. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res. 2012;103:82–89.
Pandi-Perumal SR, Cardinali DP. Melatonin: Biological Basis of Its Function in Health and Disease. Landes Bioscience; 2006.
Rzepka-Migut B, Paprocka J. Melatonin-measurement methods and the factors modifying the results. A systematic review of the literature. Int J Environ Res Public Health. 2020;17(6):1916. doi: 10.3390/ijerph17061916
Tricoire H, Locatelli A, Chemineau P, Malpaux B. Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology. 2002;143(1):84–90.
Legros C, Chesneau D, Boutin JA, Barc C, Malpaux B, et al. Melatonin from cerebrospinal fluid but not from blood reaches sheep cerebral tissues under physiological conditions. J Neuroendocrinol. 2014;26(3):151–163.
Rowland JM, Potter DE, Reiter RJ. Circadian rhythm in intraocular pressure: a rabbit model. Curr Eye Res. 1981;1(3):169–173.
Samples JR, Krause G, Lewy AJ. Effect of melatonin on intraocular pressure. Curr Eye Res. 1988;7(7):649–653.
Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16(2):79–83.
Gherghel D, Hosking SL, Orgul S. Autonomic nervous system, circadian rhythms, and primary open-angle glaucoma. Surv Ophthalmol. 2004;49(5):491–508.
Agorastos A, Huber CG. The role of melatonin in glaucoma: implications concerning pathophysiological relevance and therapeutic potential. J Pineal Res. 2011;50(1):1–7. doi: 10.1111/j.1600-079X.2010.00816.x
Martinez-Águila A, Fonseca B, Pérez de Lara MJ, Pintor J. Effect of melatonin and 5-methoxycarbonylamino-N-acetyltryptamine on the intraocular pressure of normal and glaucomatous mice. J Pharmacol Exp Ther. 2016;357(2):293–299.
Visser HE, Dees DD, Millichamp NJ, Vallone LV, Scott EM. Effect of orally administered melatonin on intraocular pressure of ophthalmologically normal dogs. Am J Vet Res. 2019;80(4):410–415.
Gagné A-M, Danilenko KV, Rosolen SG, Hébert M. Impact of oral melatonin on the electroretinogram cone response. J Circadian Rhythms. 2009;7:14–21.
Lavoie J, Rosolen SG, Chalier C, Hébert M. Negative impact of melatonin ingestion on the photopic electroretinogram of dogs. Neurosci Lett. 2013;543:78–83.
Pizzirani S. Definition, classification, and pathophysiology of canine glaucoma. Vet Clin North Am Small Anim Pract. 2015;45(6):1127–1157.
Komáromy AM, Bras D, Esson DW, et al. The future of canine glaucoma therapy. Vet Ophthalmol. 2019;22(5):726–740.
Williams DL. Immunopathogenesis of keratoconjunctivitis sicca in the dog. Vet Clin North Am Small Anim Pract. 2008;38(2):251–268, vi.
Hoyle CHV, Peral A, Pintor J. Melatonin potentiates tear secretion induced by diadenosine tetraphosphate in the rabbit. Eur J Pharmacol. 2006;552(1-3):159–161.
Navarro Gil FJ, Huete-Toral F, Crooke A, Dominguez Godinez CO, Carracedo G, Pintor J. Effect of melatonin and its analogs on tear secretion. J Pharmacol Exp Ther. 2019;371(1):186–190.
Sebbag L, Harrington DM, Mochel JP. Tear fluid collection in dogs and cats using ophthalmic sponges. Vet Ophthalmol. 2018;21(3):249–254.
Sääf J, Wetterberg L, Bäckström M, Sundall A. Melatonin administration to dogs. J Neural Transm. 1980;49(4):281–285.
Yeleswaram K, McLaughlin LG, Knipe JO, Schabdach D. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal Res. 1997;22(1):45–51.
Hartley C, Williams DL, Adams VJ. Effect of age, gender, weight, and time of day on tear production in normal dogs. Vet Ophthalmol. 2006;9(1):53–57.
Piccione G, Giannetto C, Fazio F, Giudice E. Influence of different artificial lighting regimes on intraocular pressure circadian profile in the dog (Canis familiaris). Exp Anim. 2010;59(2):215–223.
Giannetto C, Piccione G, Giudice E. Daytime profile of the intraocular pressure and tear production in normal dog. Vet Ophthalmol. 2009;12(5):302–305.
Advertisement
To evaluate the effects of long-term (30-day) oral administration of melatonin on tear production, intraocular pressure (IOP), and concentration of melatonin in the tears and serum of healthy dogs.
20 healthy sexually intact adult male dogs.
10 dogs were given melatonin (0.3 mg/kg, PO, q 24 h, administered in food at 9 am), and 10 dogs were given a placebo. Tear and serum melatonin concentrations, IOP, and tear production (determined with a Schirmer tear test) were recorded before (baseline) and 30 minutes, 3 hours, and 5 hours after administration of melatonin or the placebo on day 1 and 30 minutes after administration of melatonin or the placebo on days 8, 15, and 30.
Data collection time had significant effects on tear production, IOP, and tear melatonin concentration but not on serum melatonin concentration. Treatment (melatonin vs placebo) had a significant effect on tear melatonin concentration, but not on tear production, IOP, or serum melatonin concentration; however, tear melatonin concentration was significantly different between groups only 30 minutes after administration on day 1 and not at other times.
In healthy dogs, long-term administration of melatonin at a dosage of 0.3 mg/kg, PO, every 24 hours did not have any clinically important effects on tear production, IOP, or serum or tear melatonin concentrations.