• 1.

    Wells ML, Karlson B, Wulff A, et al.. Future HAB science: directions and challenges in a changing climate. Harmful Algae 2020;91:101632.

  • 2.

    Zastepa A, Taranu ZE, Kimpe LE, et al.. Reconstructing a long-term record of microcystins from the analysis of lake sediments. Sci Total Environ 2017;579:893901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Stewart I, Seawright AA, Shaw GR. Cyanobacterial poisoning in livestock, wild mammals and birds—an overview. Adv Exp Med Biol 2008;619:613637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Carmichael W. Astatus report on planktonic cyanobacteria (blue-green algae) and their toxins. Available at: cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=ORD&dirEntryID=37448. Accessed May 11, 2021.

    • Search Google Scholar
    • Export Citation
  • 5.

    Codd GA, Azevedo SMFO, Bagchi SN, et al.. CYANONET: a global network for cyanobacterial bloom and toxin risk management. Paris: International Hydrological Programme, 2005.

    • Search Google Scholar
    • Export Citation
  • 6.

    Roegner AF, Brena B, González-Sapienza G, et al.. Microcystins in potable surface waters: toxic effects and removal strategies. J Appl Toxicol 2014;34:441457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Schwimmer M, Schwimmer D. Medical aspects of phycology. In: Jackson DF, ed. Algae, man, and the environment. Syracuse, NY: Syracuse University Press, 1968;368412.

    • Search Google Scholar
    • Export Citation
  • 8.

    Wood R. Acute animal and human poisonings from cyanotoxin exposure—a review of the literature. Environ Int 2016;91:276282.

  • 9.

    Metcalf JS, Codd GA. Co-occurrence of cyanobacteria and cyanotoxins with other environmental health hazards: impacts and implications. Toxins (Basel) 2020;12:629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hilborn ED, Beasley VR. One health and cyanobacteria in freshwater systems: animal illnesses and deaths are sentinel events for human health risks. Toxins (Basel) 2015;7:13741395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Carmichael WW, Boyer GL. Health impacts from cyanobacteria harmful algae blooms: implications for the North American Great Lakes. Harmful Algae 2016;54:194212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Spoof L, Catherine A. Appendix 3: tables of microcystins and nodularins. In: Handbook of cyanobacterial monitoring and cyanotoxin analysis. Chichester, England: John Wiley & Sons Ltd, 2017;526537.

    • Search Google Scholar
    • Export Citation
  • 13.

    Bláha L, Babica P, Maršálek B. Toxins produced in cyanobacterial water blooms - toxicity and risks. Interdiscip Toxicol 2009;2:3641.

  • 14.

    Wacklin P, Hoffmann L, Komárek J. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (RALFS ex BORNET et FLAHAULT) comb. nova. Fottea (Praha) 2009;9:5964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Li X, Dreher TW, Li R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 2016;54:5468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    McGregor GB, Sendall BC. Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. J Phycol 2015;51:109119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Beasley VR, Dahlem AM, Cook WO, et al.. Diagnostic and clinically important aspects of cyanobacterial (blue-green algae) toxicoses. J Vet Diagn Invest 1989;1:359365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Greer B, Meneely JP, Elliott CT. Uptake and accumulation of microcystin-LR based on exposure through drinking water: an animal model assessing the human health risk. Sci Rep 2018;8:4913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    McLellan NL, Manderville RA. Toxic mechanisms of microcystins in mammals. Toxicol Res (Camb) 2017;6:391405.

  • 20.

    Beasley VR, Cook WO, Dahlem AM, et al.. Algae intoxication in livestock and waterfowl. Vet Clin North Am Food Anim Pract 1989;5:345361.

  • 21.

    Cao L, Massey IY, Feng H, et al.. A review of cardiovascular toxicity of microcystins. Toxins (Basel) 2019;11:507.

  • 22.

    Pearson L, Mihali T, Moffitt M, et al.. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 2010;8:16501680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kleppe R, Herfindal L, Doskeland SO. Cell death inducing microbial protein phosphatase inhibitors—mechanisms of action. Mar Drugs 2015;13:65056520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Bouaïcha N, Miles CO, Beach DG, et al.. Structural diversity, characterization and toxicology of microcystins. Toxins (Basel) 2019;11:714.

  • 25.

    Butler N, Carlisle J, Linville R. Toxocological summary and suggested action levels to reduce potential adverse health effects of six cyanotoxins. Sacramento, Calif: California Environmental Protection Agency, 2012.

    • Search Google Scholar
    • Export Citation
  • 26.

    World Health Organization. Cyanobacterial toxins: microcystins. background document for development of WHO guidelines for drinking-water quality and guidelines for safe recreational water environments. Geneva: World Health Organization, 2020.

    • Search Google Scholar
    • Export Citation
  • 27.

    CDC. Immediately dangerous to life or health (IDLH) values. Available at: www.cdc.gov/niosh/idlh/intridl4.html. Accessed Feb 18, 2021.

  • 28.

    Chernoff N, Hill D, Lang J, et al.. The comparative toxicity of 10 microcystin congeners administered orally to mice: clinical effects and organ toxicity. Toxins (Basel) 2020;12:403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Carmichael W. Blue-green algae: an overlooked health threat. Available at: www.researchgate.net/publication/303155255. Accessed Feb 17, 2021.

    • Search Google Scholar
    • Export Citation
  • 30.

    Devlin JP, Edwards OE, Gorham PR, et al.. Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can J Chem 1977;55:13671371.

  • 31.

    Carmichael WW, Gorham PR, Biggs DF. Two laboratory case studies on the oral toxicity to calves of the freshwater cyanophite (blue-green alga) Anabaena flos-aquae NRC-44–1. Can Vet J 1977;18:7175.

    • Search Google Scholar
    • Export Citation
  • 32.

    Carmichael WW, Biggs DF, Gorham PR. Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 1975;187:542544.

  • 33.

    Falconer IR, Humpage AR. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int J Environ Res Public Heal 2005;2:4350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    World Health Organization. Cyanobacterial toxins: anatoxin-a and analogues. Background document for development of WHO guidelines for drinking-water quality and guidelines for safe recreational water environments. Geneva: World Health Organization, 2020.

    • Search Google Scholar
    • Export Citation
  • 35.

    Svirčev Z, Lalić D, Bojadžija Savić G, et al.. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol 2019;93:24292481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Carmichael WW. Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bacteriol 1992;72:445459.

  • 37.

    Fiore MF, de Lima ST, Carmichael WW, et al.. Guanitoxin, re-naming a cyanobacterial organophosphate toxin. Harmful Algae 2020;92:101737.

  • 38.

    Cook WO, Beasley VR, Lovell RA, et al.. Consistent inhibition of peripheral cholinesterases by neurotoxins from the freshwater cyanobacterium Anabaena flos‐aquae: studies of ducks, swine, mice and a steer. Environ Toxicol Chem 1989;8:915922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Cook WO, Dellinger JA, Singh SS, et al.. Regional brain cholinesterase activity in rats injected intraperitoneally with anatoxin-a(s) or paraoxon. Toxicol Lett 1989;49:2934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Fernandes KA, Pinto E, Ferraz HG, et al.. Availability of guanitoxin in water samples containing Sphaerospermopsis torques-reginae cells submitted to dissolution tests. Pharmaceuticals (Basel) 2020;13:402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Mahmood NA, Carmichael WW, Pfahler D. Anticholesterase poisonings in dogs from a cyanobacterial (blue-green algae) bloom dominated by Anabaena flos-aquae. Am J Vet Res 1988;49:500503.

    • Search Google Scholar
    • Export Citation
  • 42.

    Miller TR, Beversdorf LJ, Weirich CA, et al.. Cyanobacterial toxins of the Laurentian great lakes, their toxicological effects, and numerical limits in drinking water. Mar Drugs 2017;15:151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    World Health Organization. Cyanobacterial toxins: saxitoxins. Background document for development of WHO guidelines for drinking-water quality and guidelines for safe recreational water environments. Geneva: World Health Organization, 2020.

    • Search Google Scholar
    • Export Citation
  • 44.

    Nagai H, Sato S, Iida K, et al.. Oscillatoxin i: a new aplysiatoxin derivative, from a marine cyanobacterium. Toxins (Basel) 2019;11:1521.

  • 45.

    Zhang H-H, Zhang X-K, Si R-R, et al. Chemical and biological study of novel aplysiatoxin derivatives from the marine cyanobacterium Lyngbya sp. Toxins (Basel) 2020;12:112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    World Health Organization. Guidelines for safe recreational water environments: coastal and fresh waters. Available at: www.who.int/water_sanitation_health/publications/srwe1/en/. Accessed May 11, 2021.

    • Search Google Scholar
    • Export Citation
  • 47.

    World Health Organization. Cyanobacterial toxins: cylindrospermopsin. Background document for development of WHO guidelines for drinking-water quality and guidelines for safe recreational water environments. Geneva: World Health Organization, 2020.

    • Search Google Scholar
    • Export Citation
  • 48.

    Pichardo S, Cameán AM, Jos A. In vitro toxicological assessment of cylindrospermopsin: a review. Toxins (Basel) 2017;9:402.

  • 49.

    Hinojosa MG, Gutiérrez-Praena D, Prieto AI, et al.. Neurotoxicity induced by microcystins and cylindrospermopsin: a review. Sci Total Environ 2019;668:547565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Mez K, Beattie K, Codd G, et al.. Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. Eur J Phycol 1997;32:111117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Roy-Lachapelle A, Solliec M, Bouchard MF, et al.. Detection of cyanotoxins in algae dietary supplements. Toxins (Basel) 2017;9:117.

  • 52.

    Mittelman NS, Engiles JB, Murphy L, et al.. Presumptive iatrogenic microcystin-associated liver failure and encephalopathy in a Holsteiner gelding. J Vet Intern Med 2016;30:17471751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    McGorum BC, Pirie RS, Glendinning L, et al.. Grazing livestock are exposed to terrestrial cyanobacteria. Vet Res 2015;46:16.

  • 54.

    Chiswell RK, Shaw GR, Eaglesham G, et al.. Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: effect of pH, temperature, and sunlight on decomposition. Environ Toxicol 1999;14:155161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Kitchens CM, Johengen TH, Davis TW. Establishing spatial and temporal patterns in Microcystis sediment seed stock viability and their relationship to subsequent bloom development in Western Lake Erie. PLoS One 2018;13:e0206821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    US EPA. Cyanobacteria Assessment Network mobile application (CyAN app). Available at: www.epa.gov/water-research/cyanobacteria-assessment-network-mobile-application-cyan-app. Accessed Feb 22, 2021.

    • Search Google Scholar
    • Export Citation
  • 57.

    Francis G. Poisonous Australian lake. Nature 1878;18:1112.

  • 58.

    Fitzgerald SD, Poppenga RH. Toxicosis due to microcystin hepatotoxins in three Holstein heifers. J Vet Diagn Invest 1993;5:651653.

  • 59.

    Galey FD, Beasley VR, Carmichael WW, et al.. Blue-green algae (Microcystis aeruginosa) hepatotoxicosis in dairy cows. Am J Vet Res 1987;48:14151420.

    • Search Google Scholar
    • Export Citation
  • 60.

    Kerr LA, McCoy CP, Eaves D. Blue-green algae toxicosis in five dairy cows. J Am Vet Med Assoc 1987;191:829830.

  • 61.

    Puschner B, Galey FD, Johnson B, et al.. Blue-green algae toxicosis in cattle. J Am Vet Med Assoc 1998;213:16051607.

  • 62.

    Steffen D. Cyanobacterial toxicoses. Newsletter of the American Association of the Bovine Practitioner, 1992.

  • 63.

    Zin LL, Edwards WC. Toxicity of blue-green algae in livestock. Bov Pract 1979;14:151153.

  • 64.

    Chengappa MM, Pace LW, McLaughlin BG. Blue-green algae (Anabaena spiroides) toxicosis in pigs. J Am Vet Med Assoc 1989;194:17241725.

  • 65.

    Cook WO, Beasley VR, Lovell RA. Blue-green algae toxicosis. Newsletter of the American Association of the Bovine Practitioner, 1987.

  • 66.

    Smith ZJ, Conroe DE, Schulz KL, et al.. Limnological differences in a two-basin lake help explain the occurrence of anatoxin-a, paralytic shellfish poisoning toxins, and microcystins. Toxins (Basel) 2020;12:559 10.3390/toxins12090559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    US EPA. Cyanobacteria and cyanotoxins: information for drinking water systems. Available at: www.epa.gov/sites/production/files/2014–08/documents/cyanobacteria_factsheet.pdf. Accessed Feb 24, 2021.

    • Search Google Scholar
    • Export Citation
  • 68.

    Van Halderen A, Harding WR, Wessels JC, et al.. Cyanobacterial (blue-green algae) poisoning of livestock in the western Cape Province of South Africa. J S Afr Vet Assoc 1995;66:260264.

    • Search Google Scholar
    • Export Citation
  • 69.

    Short SB, Edwards WC. Blue-green algae toxicoses in Oklahoma. Vet Hum Toxicol 1990;32:558560.

  • 70.

    Carbis CR, Waldron DL, Mitchell GF, et al.. Recovery of hepatic function and latent mortalities in sheep exposed to the blue-green alga Microcystis aeruginosa. Vet Rec 1995;137:1215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Jackson AR, McInnes A, Falconer IR, et al.. Clinical and pathological changes in sheep experimentally poisoned by the blue-green alga Microcystis aeruginosa. Vet Pathol 1984;21:102113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Main DC, Berry PH, Peet RL, et al.. Sheep mortalities associated with the blue green alga Nodularia spumigena. Aust Vet J 1977;53:578581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Beasley VR, Coppock RW, Simon J, et al.. Apparent blue-green algae poisoning in swine subsequent to ingestion of a bloom dominated by Anabaena spiroides. J Am Vet Med Assoc 1983;182:413414.

    • Search Google Scholar
    • Export Citation
  • 74.

    Andrinolo D, Sedan D, Telese L, et al.. Hepatic recovery after damage produced by sub-chronic intoxication with the cyanotoxin microcystin LR. Toxicon 2008;51:457467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Blough E. Cocklebur toxicosis. Available at: www.addl.purdue.edu/newsletters/2007/Summer/CT.html. Accessed Feb 23, 2021.

  • 76.

    Bildfell R. Overview of pyrrolizidine alkaloidosis. Merck Veterinary Manual. Available at: www.merckvetmanual.com/toxicology/pyrrolizidine-alkaloidosis/overview-of-pyrrolizidine-alkaloidosis. Accessed Feb 23, 2021.

    • Search Google Scholar
    • Export Citation
  • 77.

    Cornell University. Plants poisonous to livestock: saponins. Available at: poisonousplants.ansci.cornell.edu/toxicagents/saponin.html. Accessed Feb 23, 2021.

    • Search Google Scholar
    • Export Citation
  • 78.

    Clayton MJ, Davis TZ, Knoppel EL, et al.. Hepatotoxic plants that poison livestock. Vet Clin North Am Food Anim Pract 2020;36:715723.

  • 79.

    Stich RW. Ectoparasiticides used in large animals. Merck Veterinary Manual. Available at: www.merckvetmanual.com/pharmacology/ectoparasiticides/ectoparasiticides-used-in-large-animals?query=carbamate toxicity. Accessed Feb 23, 2021.

    • Search Google Scholar
    • Export Citation
  • 80.

    Roberts VA, Vigar M, Backer L, et al.. Surveillance for harmful algal bloom events and associated human and animal illnesses - One Health Harmful Algal Bloom System, United States, 2006–2018. MMWR Morb Mortal Wkly Rep 2020;69:18891894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Massey IY, Wu P, Wei J, et al.. A mini-review on detection methods of microcystins. Toxins (Basel) 2020;12:132.

  • 82.

    Wharton RE, Cunningham BR, Schaefer AM, et al.. Measurement of microcystin and nodularin activity in human urine by immunocapture-protein phosphatase 2a assay. Toxins (Basel) 2019;11:729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Moore CE, Juan J, Lin Y, et al.. Comparison of protein phosphatase inhibition assay with LC-MS/MS for diagnosis of microcystin toxicosis in veterinary cases. Mar Drugs 2016;14:54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Puschner B, Hoff B, Tor ER. Diagnosis of anatoxin—a poisoning in dogs from North America. J Vet Diagn Invest 2008;20:8992.

  • 85.

    Rankin KA, Alroy KA, Kudela RM, et al.. Treatment of cyanobacterial (microcystin) toxicosis using oral cholestyramine: case report of a dog from Montana. Toxins (Basel) 2013;5:10511063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    US EPA. Laboratories that analyze for cyanobacteria and cyanotoxins. Available at: www.epa.gov/cyanohabs/laboratories-analyze-cyanobacteria-and-cyanotoxins. Accessed Jan 26, 2020.

    • Search Google Scholar
    • Export Citation
  • 87.

    American Association of Laboratory Diagnosticians. Accreditation laboratories. Available at: www.aavld.org/accredited-labs. Accessed Jan 26, 2020.

    • Search Google Scholar
    • Export Citation
  • 88.

    CDC. One Health Harmful Algal Bloom System (OHHABS). Available at: www.cdc.gov/habs/ohhabs.html. Accessed May 11, 2021.

  • 89.

    CDC. One Health Harmful Algal Bloom System (OHHABS)—harmful algal bloom (HAB) event and case definitions. Available at: www.cdc.gov/habs/pdf/ohhabs-case-and-event-definitions-table-508.pdf. Accessed Jan 25, 2020.

    • Search Google Scholar
    • Export Citation
  • 90.

    Mereish KA, Solow R. Effect of antihepatotoxic agents against microcystin-LR toxicity in cultured rat hepatocytes. Pharm Res 1990;7:256259.

  • 91.

    Mereish KA, Bunner DL, Ragland DR, et al.. Protection against microcystin-LR-induced hepatotoxicity by silymarin: biochemistry, histopathology, and lethality. Pharm Res 1991;8:273277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Rao PVL, Jayaraj R, Bhaskar ASB. Protective efficacy and the recovery profile of certain chemoprotectants against lethal poisoning by microcystin-LR in mice. Toxicon 2004;44:723730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Debruyn JM, Wilhelm SW, Ludwig A, et al.. Cyanobacteria (glue-green algae) harmful algal blooms. University of Tennessee Extension Document No. W 340. Available at: extension.tennessee.edu/publications/Documents/W340.pdf. Accessed Jan 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 94.

    Clawson B. Preserve your natural backyard pond. Michigan State University Extension. Available at: www.canr.msu.edu/news/preserve_your_natural_backyard_pond. Accessed Jan 25, 2020.

    • Search Google Scholar
    • Export Citation
  • 95.

    Bass T. Avoiding algae issues in stock ponds. Montana State University Extension. Available at: apps.msuextension.org/magazine/articles/5460. Accessed Feb 25, 2021.

    • Search Google Scholar
    • Export Citation
  • 96.

    US EPA. Control Measures for cyanobacterial HABs in surface water. Available at: www.epa.gov/cyanohabs/control-measures-cyanobacterial-habs-surface-water. Accessed Feb 23, 2021.

    • Search Google Scholar
    • Export Citation
  • 97.

    Schultheis RA. Algae control in stock tanks, ponds and lakes. University of Missouri Extension. Available at: extension.missouri.edu/media/wysiwyg/Extensiondata/CountyPages/Webster/Docs/Algae_Control_in_Tanks_and_Ponds.pdf. Accessed May 11, 2021.

    • Search Google Scholar
    • Export Citation
  • 98.

    Lembi C. Barley straw for algae control. Purdue University Extension Report No. APM-1-W. 2002. Available at: mdc.itap.purdue.edu/item.asp?Item_Number=APM-1-Accessed W. May 11, 2021.

    • Search Google Scholar
    • Export Citation
  • 99.

    Delaware Division of Fish & Wildlife. Barley straw for algae control. Delaware Department of Natural Resources and Environment Control Document No. 40–05–02–02/07/012001. Available at: www.dnrec.delaware.gov/fw/Fisheries/Documents/barleystraw.pdf. Accessed Jan 23, 2020.

    • Search Google Scholar
    • Export Citation
  • 100.

    Haberland M. Pond and lake management part VI: using barley straw to control algae. Rutgers University Extension Document No. FS11712011. Available at: njaes.rutgers.edu/fs1171/. Accessed Jan 23, 2020.

    • Search Google Scholar
    • Export Citation
  • 101.

    Swistock B. Barley straw for algae control. PennState Extension. Available at: extension.psu.edu/barley-straw-for-algae-control. Accessed Jan 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 102.

    Sink T, Gwinn J, Gerke H, et al.. Managing and controlling algae in ponds. Texas A&M University Extension Publication No. EWF-015. Available at: cdn-ext.agnet.tamu.edu/wp-content/uploads/2019/03/EWF-015-managing-and-controlling-algae-in-ponds.pdf. Accessed Jan 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 103.

    Helfrich LA, Neves RJ, Libey G, et al.. Control methods for aquatic plants in ponds and lakes. Virginia Cooperative Extension Document No. 420–2512009. Available at: www.pubs.ext.vt.edu/420/420–251/420–251.html. Accessed Jan 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 104.

    USDA Agricultural Research Service. Phosphorus removal structures. Available at: www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/phosphorus-removal-structures/. Accessed Mar 22, 2021.

    • Search Google Scholar
    • Export Citation
  • 105.

    Toste A. Combating the “phosphorus paradox.” Available at: www.progressivedairy.com/topics/manure/combating-the-phosphorus-paradox. Accessed Mar 22, 2021.

    • Search Google Scholar
    • Export Citation
  • 106.

    Anderson DM. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 2009;52:342347.

  • 107.

    Anderson DM, Boyer GL, Cammen LM, et al.. Prevention, control and mitigation of harmful algal blooms: a research plan. Available at: www.whoi.edu/cms/files/PCM_HAB_Research_Plan%282%29_18563_23051.pdf. Accessed May 11, 2021.

    • Search Google Scholar
    • Export Citation
  • 108.

    Camberato DM, Lopez RG. Controlling algae in irrigation ponds. Purdue Extension Publication No. HO-247-W. Available at: mdc.itap.purdue.edu/. Accessed Jan 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 109.

    Han W, Clarke W, Pratt S. Composting of waste algae: a review. Waste Manag 2014;34:11481155.

  • 110.

    Arnold M. Frequently asked questions about harmful algal blooms (HABs) in farm ponds used to water livestock. Available at: u.osu.edu/beef/2019/08/28/frequently-asked-questions-about-harmful-algal-blooms-habs-in-farm-ponds-used-to-water-livestock/. Accessed Feb 23, 2021.

    • Search Google Scholar
    • Export Citation
  • 111.

    van der Merwe D, Blocksome C, Hollis L. Identification and management of blue-green algae in farm ponds. K-State Research and Extension Document No. MF-3065. Available at: bookstore.ksre.ksu.edu/pubs/MF3065.pdf. Accessed Feb 24, 2021.

    • Search Google Scholar
    • Export Citation
  • 112.

    Paerl HW, Otten TG, Kudela R. Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environ Sci Technol 2018;52:55195529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    US EPA. Hypoxia Task Force nutrient reduction strategies. Available at: www.epa.gov/ms-htf/hypoxia-task-force-nutrient-reduction-strategies. Accessed Apr 8, 2021.

    • Search Google Scholar
    • Export Citation
  • 114.

    Matthijs HCP, Jančula D, Visser PM, et al.. Existing and emerging cyanocidal compounds: new perspectives for cyanobacterial bloom mitigation. Aquat Ecol 2016;50:443460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    IARC. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. Available at: publications.iarc.fr/112. Accessed Feb 17, 2021.

  • 116.

    Žegura B, Štraser A, Filipič M. Genotoxicity and potential carcinogenicity of cyanobacterial toxins - a review. Mutat Res 2011;727:1641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117.

    Lee J, Lee S, Mayta A, et al.. Microcystis toxin–mediated tumor promotion and toxicity lead to shifts in mouse gut microbiome. Ecotoxicol Environ Saf 2020;206:111204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118.

    Bernstein JA, Ghosh D, Levin LS, et al.. Cyanobacteria: an unrecognized ubiquitous sensitizing allergen? Allergy Asthma Proc 2011;32:106110.

  • 119.

    Rogers ED, Henry TB, Twiner MJ, et al.. Global gene expression profiling in larval zebrafish exposed to microcystin-LR and microcystis reveals endocrine disrupting effects of cyanobacteria. Environ Sci Technol 2011;45:19621969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Mallia V, Ivanova L, Eriksen GS, et al.. Investigation of in vitro endocrine activities of Microcystis and Planktothrix cyanobacterial strains. Toxins (Basel) 2020;12:228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Backer LC, Miller M. Sentinel animals in a one health approach to harmful cyanobacterial and algal blooms. Vet Sci 2016;3:8.

Advertisement

Harmful algal bloom resources for livestock veterinarians

View More View Less
  • 1 From the Harmful Algal Blooms Working Group, AVMA, Schaumburg, IL 60173.

Abstract

Harmful algal blooms can have deleterious effects on animal and human health as well as the environment and are anticipated to become more frequent and intensified in the future because of climate change. Veterinarians are well positioned to diagnose and treat animals affected by HABs and to educate livestock owners and the public about health risks and environmental issues associated with those toxic events. Pets, livestock, wildlife, and marine life can all be affected by HABs. Information about HABs is becoming increasingly assessable as a result of ongoing research into the structure, properties, toxic mechanisms, and geographic distribution of toxins found in HABs. The AVMA's multi-entity working group on HABs is comprised of members from the Aquatic Veterinary Medicine Committee, Committee on Environmental Issues, and Council on Public Health and is working to make more information and resources regarding HABs available to practicing veterinarians. The present article is the first of those resources and provides a review of HABs, with a focus on livestock. It includes background material about bloom formation, appearance, and persistence as well as descriptions of clinical observations from early field cases and more recent information about the causative organisms and toxins to provide livestock veterinarians a foundation for understanding HABs. Reporting of HABs and prevention and mitigation strategies for livestock owners are also discussed. (J Am Vet Med Assoc 2021;259:151–161)

Abstract

Harmful algal blooms can have deleterious effects on animal and human health as well as the environment and are anticipated to become more frequent and intensified in the future because of climate change. Veterinarians are well positioned to diagnose and treat animals affected by HABs and to educate livestock owners and the public about health risks and environmental issues associated with those toxic events. Pets, livestock, wildlife, and marine life can all be affected by HABs. Information about HABs is becoming increasingly assessable as a result of ongoing research into the structure, properties, toxic mechanisms, and geographic distribution of toxins found in HABs. The AVMA's multi-entity working group on HABs is comprised of members from the Aquatic Veterinary Medicine Committee, Committee on Environmental Issues, and Council on Public Health and is working to make more information and resources regarding HABs available to practicing veterinarians. The present article is the first of those resources and provides a review of HABs, with a focus on livestock. It includes background material about bloom formation, appearance, and persistence as well as descriptions of clinical observations from early field cases and more recent information about the causative organisms and toxins to provide livestock veterinarians a foundation for understanding HABs. Reporting of HABs and prevention and mitigation strategies for livestock owners are also discussed. (J Am Vet Med Assoc 2021;259:151–161)

Contributor Notes

Address correspondence to Dr. Wolfe (emw75@post.harvard.edu).