• 1. USDA FSIS. 9 CFR 301.2. Agency organization and terminology; mandatory meat and poultry products inspection and voluntary inspection and certification. Terminology; adulteration and misbranding standards. Definitions. Available at: www.govinfo.gov/content/pkg/CFR-2011-title9-vol2/pdf/CFR-2011-title9-vol2-sec301-2.pdf. Accessed Jun 8, 2018.

    • Search Google Scholar
    • Export Citation
  • 2. US FDA. 1999 Food Code. Purpose and definitions. Available at: www.fda.gov/food/guidanceregulation/retailfoodprotection/foodcode/ucm2018345.htm. Accessed Aug 14, 2018.

    • Search Google Scholar
    • Export Citation
  • 3. USDA National Agricultural Statistics Service. 2012 Census of Agriculture. Available at: www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf. Accessed Jul 14, 2018.

    • Search Google Scholar
    • Export Citation
  • 4. Baynes RE, Dedonder K, Kissell L, et al. Health concerns and management of select veterinary drug residues. Food Chem Toxicol 2016;88:112122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. US FDA. 2017 Animal products FDA regulates. Available at www.fda.gov/ForConsumers/ConsumerUpdates/ucm268125.htm. Accessed Aug 8, 2018.

    • Search Google Scholar
    • Export Citation
  • 6. US FDA. US Department of Health and Human Services. 21 CFR 530. Extralabel drug use in animals. Available at: www. govinfo.gov/content/pkg/CFR-2018-title21-vol6/pdf/CFR-2018-title21-vol6-part530.pdf. Accessed Jul 12, 2018.

    • Search Google Scholar
    • Export Citation
  • 7. USDA FSIS. Inspection and grading of meat and poultry: what are the differences? Available at: www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/production-and-inspection/inspection-and-grading-of-meat-and-poultry-what-are-the-differences_/inspection-and-grading-differences. Accessed Feb 1, 2019.

    • Search Google Scholar
    • Export Citation
  • 8. Amann D. Harvesting wild game. Available at: www.fsis.usda.gov/wps/wcm/connect/fsis-content/internet/main/newsroom/meetings/newsletters/small-plant-news/small-plant-news-archive/volume-5/spn-vol5-no4. Accessed Feb 2, 2019.

    • Search Google Scholar
    • Export Citation
  • 9. USDA FSIS. National residue program for meat, poultry, and egg products. 2019 residue sampling plans October 1, 2018 to September 30, 2019. Available at: www.fsis.usda.gov/wps/wcm/connect/394f0bd4-2c5d-47bc-ba4f-f65992972e43/2019-blue-book.pdf?MOD=AJPERES. Accessed Feb 2, 2019.

    • Search Google Scholar
    • Export Citation
  • 10. USDA FSIS. National residue program for meat, poultry, and egg products. Residue sample results—“Red Book”. Available at: www.fsis.usda.gov/wps/portal/fsis/topics/data-collection-and-reports/chemistry/red-books/red-book. Accessed Feb 2, 2019.

    • Search Google Scholar
    • Export Citation
  • 11. USDA FSIS. Meat and meat products, poultry, eggs and products of their processing. Available at: www.fsis.usda.gov/wps/wcm/connect/52d32002-8401-43a6-9aad-c9e296b97ddf/Custum_Union_Decision_299.pdf?MOD=AJPERES. Accessed Feb 2, 2019.

    • Search Google Scholar
    • Export Citation
  • 12. US FDA. Animal Drugs @ FDA. Available at: www.animaldrugsatfda.fda.gov/adafda/views/#/search. Accessed Aug 9, 2018.

  • 13. FARAD VetGRAM. Available at: www.farad.org/vetgram/search.asp. Accessed Jun 28, 2018.

  • 14. National Research Support Project 7. The minor use animal drug program. Available at: www.nrsp-7.org. Accessed Mar 1, 2019.

  • 15. US FDA. US Department of Health and Human Services. 21 CFR 530.41 Extralabel drug use in animals. Drugs prohibited for extralabel use in animals. Available at: www.ecfr.gov/cgibin/text-idx?SID=7e5c85bcd0ff67b4e0702c91270ccd4e&mc=true&node=se21.6.530_141&rgn=div8. Accessed May 16, 2019.

    • Search Google Scholar
    • Export Citation
  • 16. US FDA. US Department of Health and Human Services. 21 CFR 1301.75. Registration of manufacturers, distributors, and dispensers of controlled substances. Physical security controls for practitioners. Available at: www.deadiversion.usdoj.gov/21cfr/cfr/1301/1301_75.htm. Accessed Jul 22, 2018.

    • Search Google Scholar
    • Export Citation
  • 17. US FDA. US Department of Health and Human Services. 21 CFR 812. Schedules of controlled substances. Available at: www.deadiversion.usdoj.gov/21cfr/21usc/812.htm. Accessed Jul 22, 2018.

    • Search Google Scholar
    • Export Citation
  • 18. Kreeger TJ. Wildlife chemical immobilization. In: Silvey NJ, ed. The wildlife techniques manual. 7th ed. Baltimore: Johns Hopkins University Press, 2012;118139.

    • Search Google Scholar
    • Export Citation
  • 19. US FDA. Compliance policy guide Sec. 615.115 extralabel use of medicated feeds for minor species. Available at: www.fda.gov/ucm/groups/fdagov-public/@fdagov-afda-ice/documents/webcontent/ucm074659.pdf. Accessed Jul 10, 2018.

    • Search Google Scholar
    • Export Citation
  • 20. Martin KL, Clapham MO, Davis JL, et al. Extralabel drug use in small ruminants. J Am Vet Med Assoc 2018;253:10011009.

  • 21. US FDA. Drug indexing. Available at: www.fda.gov/AnimalVeterinary/DevelopmentApprovalProcess/MinorUseMinorSpecies/ucm070206.htm. Accessed Aug 9, 2018.

    • Search Google Scholar
    • Export Citation
  • 22. US FDA, US Department of Health and Human Services. 21 CFR parts 20, 25, 201, 202, 207, 225, 226, 500, 510, 511, 515, 516, 558, and 589. Index of legally marketed unapproved new animal drugs for minor species; final rule. Available at: www.govinfo.gov/content/pkg/FR-2007-12-06/html/E7-23580.htm. Accessed Aug 20, 2018.

    • Search Google Scholar
    • Export Citation
  • 23. US FDA. The Index of legally marketed unapproved new animal drugs for minor species. Available at: www.fda.gov/AnimalVeterinary/DevelopmentApprovalProcess/MinorUseMinorSpecies/ucm125452.htm. Accessed Aug 20, 2018.

    • Search Google Scholar
    • Export Citation
  • 24. US FDA. FDA's concerns about unapproved animal drugs. Available at: www.fda.gov/AnimalVeterinary/GuidanceComplianceEnforcement/ComplianceEnforcement/UnapprovedAnimalDrugs/ucm229084.htm. Accessed Jul 9, 2018.

    • Search Google Scholar
    • Export Citation
  • 25. US FDA. US Department of Health and Human Services. 21 CFR 530.13 Extralabel drug use in animals. Extralabel use from compounding of approved new animal and approved human drugs. Available at: www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=530.13. Accessed Aug 9, 2018.

    • Search Google Scholar
    • Export Citation
  • 26. FARAD. FARAD compounding guide for the food animal veterinarian. Available at: www.farad.org/publications/miscellaneous/FARADCompoundingGuide.pdf. Accessed Jan 9, 2019.

    • Search Google Scholar
    • Export Citation
  • 27. US FDA. FDA Regulation of Animal Drugs. Available at: www.fda.gov/AnimalVeterinary/ResourcesforYou/ucm268128.htm. Accessed Aug 9, 2018.

    • Search Google Scholar
    • Export Citation
  • 28. Cattet M. A CCWHC technical bulletin: drug residues in wild meat—addressing a public health concern. Can Wildl Health Cent Newsletters Publ 2003;49:14.

    • Search Google Scholar
    • Export Citation
  • 29. USDA APHIS. 9 CFR 112.2. Packaging and labeling. Final container label, carton label, and enclosure. Available at: www.govinfo.gov/content/pkg/CFR-2006-title9-vol1/pdf/CFR-2006-title9-vol1. Accessed Jul 8, 2018.

    • Search Google Scholar
    • Export Citation
  • 30. USDA APHIS. Veterinary Services Memorandum No. 800.51. Available at: www.aphis.usda.gov/animal_health/vet_biologics/publications/memo_800_51.pdf. Accessed Sep 12, 2018.

    • Search Google Scholar
    • Export Citation
  • 31. Riviere JE, Papich MG. Potential and problems of developing transdermal patches for veterinary applications. Adv Drug Deliv Rev 2001;50:175203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Conner MM, Baker DL, Wild MA, et al. Fertility control in free-ranging elk using gonadotropin-releasing hormone agonist leuprolide: effects on reproduction, behavior, and body condition. J Wildl Manage 2010;71:23462356.

    • Search Google Scholar
    • Export Citation
  • 33. Grimm KA, Lamont LA. Clinical pharmacology. In: West G, Heard D, Caulkett N, eds. Zoo animal and wildlife immobilization and anesthesia. 2nd ed. Ames, Iowa: John Wiley and Sons, 2014;3.

    • Search Google Scholar
    • Export Citation
  • 34. Semple HA, Gorecki DK, Farley SD, et al. Pharmacokinetics and tissue residues of Telazol in free-ranging polar bears. J Wildl Dis 2000;36:653662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Ryan CW, Vaughan MR, Meldrum JB, et al. Retention time of telazol in black bears. J Wildl Manage 2008;73:210213.

  • 36. Janssen CF, Maiello P, Wright MJ Jr, et al. Comparison of atipamezole with yohimbine for antagonism of xylazine in mice anesthetized with ketamine and xylazine. J Am Assoc Lab Anim Sci 2017;56:142147.

    • Search Google Scholar
    • Export Citation
  • 37. Reeves PT, Roesch C, Raghnaill MN. Drug action and pharmacodynamics. In: Merck veterinary manual. Available at: www.merckvetmanual.com/pharmacology/pharmacology-introduction/drug-action-and-pharmacodynamics. Accessed Aug 1, 2018.

    • Search Google Scholar
    • Export Citation
  • 38. Swan GE. Drugs used for the immobilization, capture, and translocation of wild animals. In: McKenzie AA, ed. The capture and care manual. Pretoria, South Africa: Wildlife Decision Support Services, 1993;1723.

    • Search Google Scholar
    • Export Citation
  • 39. Haigh JC. Opioids in zoological medicine. J Zoo Wildl Med 1990;21:391413.

  • 40. Alavi FK, Alavi K, McCann JP, et al. Effect of dietary obesity on naloxone disposition in sheep. Can J Physiol Pharmacol 1994;72:471475.

  • 41. Payne R, Gradert TL, Inturrisi CE. Cerebrospinal fluid distribution of opioids after intraventricular and lumbar subarachnoid administration in sheep. Life Sci 1996;59:13071321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Liu H, Han L, Xie J, et al. The tissue residues of sodium dehydroacetate used as feed preservative in swine. J Sci Food Agric 2018;98:787791.

  • 43. Ranheim B, Horsberg TE, Nymoen U, et al. Reversal of medetomidine-induced sedation in reindeer (Rangifer tarandus tarandus) with atipamezole increases the medetomidine concentration in plasma. J Vet Pharmacol Ther 1997;20:350354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Ranheim B, Søli NE, Ryeng KA, et al. Pharmacokinetics of medetomidine and atipamezole in dairy calves: an agonist-antagonist interaction. J Vet Pharmacol Ther 1998;21:428432.

    • Search Google Scholar
    • Export Citation
  • 45. Ranheim B, Arnemo JM, Ryeng KA, et al. A pharmacokinetic study including some relevant clinical effects of medetomidine and atipamezole in lactating dairy cows. J Vet Pharmacol Ther 1999;22:368373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Ranheim B, Arnemo JM, Stuen S, et al. Medetomidine and atipamezole in sheep: disposition and clinical effects. J Vet Pharmacol Ther 2000;23:401404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Kanazawa H, Nishimura R, Sasaki N, et al. Determination of medetomidine, atipamezole and midazolam in pig plasma by liquid chromatography-mass spectrometry. Biomed Chromatogr 1995;9:188191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Horsberg TE, Burka JF, Tasker RAR. Actions and pharmacokinetic properties of the α2-adrenergic agents, medetomidine and atipamezole, in rainbow trout (Oncorhynchus mykiss). J Vet Anaesth 1999;26:1822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Jiang S, Tan LJ, Li X, et al. Antagonistic effect of atipamezole and its pharmacokinetics following anaesthesia with the combined anaesthetic for miniature pigs in minipigs. Acta Vet Zootech Sin 2014;12:20742080.

    • Search Google Scholar
    • Export Citation
  • 50. Ward RM, Daniel CH, Willes SR, et al. Tolazoline pharmacokinetics in lambs. Pediatr Pharmacol (New York) 1984;4:101107.

  • 51. Delehant TM, Denhart JW, Lloyd WE, et al. Pharmacokinetics of xylazine, 2, 6-dimethylaniline, and tolazoline in tissues from yearling cattle and milk from mature dairy cows after sedation with xylazine hydrochloride and reversal with tolazoline hydrochloride. Vet Ther 2003;4:128134.

    • Search Google Scholar
    • Export Citation
  • 52. The European Agency for the Evaluation of Medicinal Products. Doxapram summary report. Available at: www.ema.europa.eu/en/documents/mrl-report/doxapram-summary-report-committee-veterinary-medicinal-products_en.pdf. Accessed May 14, 2019.

    • Search Google Scholar
    • Export Citation
  • 53. Paterson J. Capture myopathy. In: West G, Heard D, Caulkett N, eds. Zoo animal and wildlife immobilization and anesthesia. 2nd ed. Ames, Iowa: John Wiley and Sons, 2014;115122.

    • Search Google Scholar
    • Export Citation
  • 54. Fowler A. Capture myopathy. Available at: www.fourthcrossingwildlife.com/CaptureMyopathy-AnneFowler.pdf. Accessed Aug 1, 2018.

  • 55. Robbins C. Minerals. In: Wildlife feeding and nutrition. New York: Academic Press, 1983;5558.

  • 56. Bartsch RC, McConnell GD, Imes GD, et al. A review of exertional rhabdomyolysis in wild and domestic animals and man. Vet Pathol 1977;14:314324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57. Ehlig CF, Hogue DE, Allaway WH, et al. Fate of selenium from selenite or seleno-methionine, with or without vitamin E, in lambs. J Nutr 1967;92:121126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58. Van Vleet JF. Retention of selenium in tissues of calves, lambs, and pigs after parenteral injection of a selenium-vitamin E preparation. Am J Vet Res 1975;36:13351340.

    • Search Google Scholar
    • Export Citation
  • 59. Arnold RL, Olson OE, Carlson CW. Tissue selenium content and serum tocopherols as influenced by dietary type, selenium and vitamin E. Poult Sci 1974;53:21852192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60. Hidiroglou M, Jenkins K, Carson RB, et al. Considerations on metabolisms of selenium and vitamin E in young ruminant. Ann Biol Anim Biochim Biophys 1969;9:161170.

    • Search Google Scholar
    • Export Citation
  • 61. Dumka VK, Sandhu HS, Rajput N. Effect of gatifloxacine on the pharmacokinetics of meloxicam in buffalo calves. Indian J Anim Sci 2007;77:12701272.

    • Search Google Scholar
    • Export Citation
  • 62. Cagnardi P, Guccione J, Villa R, et al. Clinical efficacy and pharmacokinetics of meloxicam in Mediterranean buffalo calves (Bubalus bubalis). PLoS One 2017;12:e0187252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63. Patel HA, Mody SK. Disposition study of meloxicam alone and along with enrofloxacin in male buffalo calves after intravenous route. Wayamba J Anim Sci 2012;4:322326.

    • Search Google Scholar
    • Export Citation
  • 64. Ali Ahmed FU, Yadav RS, Garg SK. Comparative disposition kinetics of meloxicam following a single intravenous bolus dose and its concurrent administration with ofloxacin in yak and cattle. J Bioanal Biomed 2015;7:197202.

    • Search Google Scholar
    • Export Citation
  • 65. Baert K, Nackaerts J, De Backer P. Disposition of sodium salicylate, flunixin, and meloxicam after intravenous administration in ostriches (Struthio camelus). J Avian Med Surg 2002;16:123128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66. Goessens T, Antonissen G, Croubels S, et al. Nonsteroidal anti-inflammatory drugs in birds: pharmacokinetics, pharmacodynamics and toxicity. Vlaams Diergeneeskd Tijdschr 2016;85:5562.

    • Search Google Scholar
    • Export Citation
  • 67. Baert K, De Backer P. Comparative pharmacokinetics of three non-steroidal anti-inflammatory drugs in five bird species. Comp Biochem Physiol C Toxicol Pharmacol 2003;134:2533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68. Baert L, Van Poucke S, Vermeersch H, et al. Pharmacokinetics and anthelmintic efficacy of febantel in the racing pigeon (Columba livia). J Vet Pharmacol Ther 1993;16:223231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69. Davis LE, Davis CA, Koritz G, et al. Comparative studies of pharmacokinetics of fenbendazole in food-producing animals. Vet Hum Toxicol 1988;30(suppl 1):911.

    • Search Google Scholar
    • Export Citation
  • 70. Griffith R, Yaeger M, Hostetter S, et al. Safety of fenbendazole in Chinese ring-necked pheasants (Phasianus colchicus). Avian Dis 2014;58:815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71. Short CR, Barker SA, Flory W. Comparative drug metabolism and disposition in minor species. Vet Hum Toxicol 1988;30(suppl 1):28.

  • 72. Short CR, Barker SA, Hsieh LC, et al. The elimination of fenbendazole and its metabolites in the chicken, turkey and duck. J Vet Pharmacol Ther 1988;11:204209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73. Patton WH, Schwartz LD, Babish JG, et al. Use of amprolium for the control of coccidiosis in pheasants. Avian Dis 1984;28:693699.

  • 74. Dieterich RA, Craigmill AL. Safety, efficacy, and tissue residues of ivermectin in reindeer. Rangifer 1990;10:5356.

  • 75. European Medicines Agency. European public MRL assessment report (EPMAR). Ivermectin (All mammalian food producing species). Available at: www.ema.europa.eu/en/documents/mrl-report/ivermectin-all-mammalian-food-producing-species-european-public-maximum-residue-limit-assessment_en.pdf. Accessed May 15, 2019.

    • Search Google Scholar
    • Export Citation
  • 76. European Medicines Agency Committee for Medicinal Products for Veterinary Use. Ivermectin (modification of maximum residue limits). Summary report (5). Available at: www.ema.europa.eu/en/documents/mrl-report/ivermectin-modification-maximum-residue-limits-summary-report-5-committee-veterinary-medicinal_en.pdf. Accessed May 15, 2019.

    • Search Google Scholar
    • Export Citation
  • 77. Oksanen A, Åsbakk K, Raekallio M, et al. The relative plasma availabilities of ivermectin in reindeer (Rangifer tarandus tarandus) following subcutaneous and two different oral formulation applications. Acta Vet Scand 2014;56:76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78. Wilson PR. Observations of a long-acting formulation of oxytetracycline in red deer (Cervus elaphus). N Z Vet J 1983;31:7577.

  • 79. Haigh JC, Dowling PM, Smits JG. Pharmacokinetics of long-acting oxytetracycline in fallow deer (Dama dama). J Vet Pharmacol Ther 1997;20:243245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80. Cook W, Cain D, Hensley T, et al. Tissue residue levels of florfenicol, ceftiofur, tulathromycin, oxytetracycline, cydectin in white-tailed deer (Odocoileus virginanus) at 11, 21, and 31 days post intramuscular injection. Small Rumin Res 2016;144:234235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81. Cook W, Cain D, Hensley T, et al. Tissue residue levels of butorphanol, azaperone, medetomidine, atipamezole, and naltrexone in white-tailed deer (Odocoileus virginanus) at 11 and 21 days post intramuscular injection. Poult Fish Wildl Sci 2016;4:168.

    • Search Google Scholar
    • Export Citation
  • 82. Jernigan AD, Wilson RC, Booth NH, et al. Comparative pharmacokinetics of yohimbine in steers, horses and dogs. Can J Vet Res 1988;52:172176.

    • Search Google Scholar
    • Export Citation
  • 83. Cole A, Mutlow A, Isaza R, et al. Pharmacokinetics and pharmacodynamics of carfentanil and naltrexone in female common eland (Taurotragus oryx). J Zoo Wildl Med 2006;37:318326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84. Miller MW, Wild MA, Lance WR. Efficacy and safety of naltrexone hydrochloride for antagonizing carfentanil citrate immobilization in captive Rocky Mountain elk (Cervus elaphus nelsoni). J Wildl Dis 1996;32:234239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85. Ramsay EC, Sleeman JM, Clyde VL. Immobilization of black bears (Ursus americanus) with orally administered carfentanil citrate. J Wildl Dis 1995;31:391393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86. Schumacher J, Citino SB, Dawson R Jr. Effects of a carfentanil-xylazine combination on cardiopulmonary function and plasma catecholamine concentrations in female bongo antelopes. Am J Vet Res 1997;58:157161.

    • Search Google Scholar
    • Export Citation
  • 87. Schumacher J, Heard DJ, Young L, et al. Cardiopulmonary effects of carfentanil in dama gazelles (Gazella dama). J Zoo Wildl Med 1997;28:166170.

    • Search Google Scholar
    • Export Citation
  • 88. Wolfe LL, Nol P, McCollum MP, et al. Tissue residue levels after immobilization of Rocky Mountain elk (Cervus elaphus nelsoni) using a combination of nalbuphine, medetomidine, and azaperone antagonized with naltrexone, atipamezole, and tolazoline. J Wildl Dis 2018;54:362365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89. Anastasio A, Esposito M, Amorena M, et al. Residue study of ivermectin in plasma, milk, and mozzarella cheese following subcutaneous administration to buffalo (Bubalus bubalis). J Agric Food Chem 2002;50:52415245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90. Dupuy J, Sutra JF, Alvinerie M, et al. Plasma and milk kinetic of eprinomectin and moxidectin in lactating water buffalo (Bubalus bubalis). Vet Parasitol 2008;157:284290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91. Coetzee JF, Gehring R, Tarus-Sang J, et al. Effect of sub-anesthetic xylazine and ketamine (‘ketamine stun’) administered to calves immediately prior to castration. Vet Anaesth Analg 2010;37:566578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92. Baldridge SL, Coetzee JF, Dritz SS, et al. Pharmacokinetics and physiologic effects of intramuscularly administered xylazine hydrochloride-ketamine hydrochloride-butorphanol tartrate alone or in combination with orally administered sodium salicylate on biomarkers of pain in Holstein calves following castration and dehorning. Am J Vet Res 2011;72:13051317.

    • Search Google Scholar
    • Export Citation
  • 93. Boison JO, Bachtold K, Matus J, et al. A single laboratory-validated LC-MS method for the analysis of tulathromycin residues in bison and deer sera and selected tissues of white-tailed deer. Drug Test Anal 2016;8:584595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94. Bachtold K, Alcorn J, Matus J, et al. Pharmacokinetics of tulathromycin after subcutaneous injection in North American bison (Bison bison). J Vet Pharmacol Ther 2015;38:471474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95. Gáler D, Hessong S, Beato B, et al. An analytical method for the analysis of tulathromycin, an equilibrating triamilide, in bovine and porcine plasma and lung. J Agric Food Chem 2004;52:21792191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96. Nowakowski MA, Inskeep PB, Risk JE, et al. Pharmacokinetics and lung tissue concentrations of tulathromycin, a new triamilide antibiotic, in cattle. Vet Ther 2004;5:6074.

    • Search Google Scholar
    • Export Citation
  • 97. Tohamy MA, El-Gendy AAM, Attia TA. Some pharmacokinetic aspects of tulathromycin in Fresian cattle calves. J Am Sci 2011;7:651655.

  • 98. El-Sheikh WMA. Pharmacokinetic studies on tulathromycin in controlling respiratory diseases in healthy and febrile feedlot calves. Assiut Vet Med J 2011;57:360374.

    • Search Google Scholar
    • Export Citation
  • 99. Cox SR, McLaughlin C, Fielder AE, et al. Rapid and prolonged distribution of tulathromycin into lung homogenate and pulmonary epithelial lining fluid of Holstein calves following a single subcutaneous administration of 2.5-mg/kg body weight. Int J Appl Res Vet Med 2010;8:129137.

    • Search Google Scholar
    • Export Citation
  • 100. Coetzee JF, Kleinhenz MD, Magstadt DR, et al. Pneumatic dart delivery of tulathromycin in calves results in lower antimicrobial concentration and increased biomarkers of stress and injection site inflammation compared with subcutaneous injection. J Anim Sci 2018;96:30893101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101. Clothier KA, Leavens T, Griffith RW, et al. Pharmacokinetics of tulathromycin after single and multiple subcutaneous injections in domestic goats (Capra aegagrus hircus). J Vet Pharmacol Ther 2011;34:448454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102. Clothier KA, Leavens T, Griffith RW, et al. Tulathromycin assay validation and tissue residues after single and multiple subcutaneous injections in domestic goats (Capra aegagrus hircus). J Vet Pharmacol Ther 2012;35:113120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103. Young G, Smith GW, Leavens TL, et al. Pharmacokinetics of tulathromycin following subcutaneous administration in meat goats. Res Vet Sci 2011;90:477479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104. Grismer B, Rowe JD, Carlson J, et al. Pharmacokinetics of tulathromycin in plasma and milk samples after a single subcutaneous injection in lactating goats (Capra hircus). J Vet Pharmacol Ther 2014;37:205208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105. Amer AMM, Constable PD, Goudah A, et al. Pharmacokinetics of tulathromycin in lactating goats. Small Rumin Res 2012;108:137143.

  • 106. Romanet J, Smith GW, Leavens TL, et al. Pharmacokinetics and tissue elimination of tulathromycin following subcutaneous administration in meat goats. Am J Vet Res 2012;73:16341640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107. Lin Z, Cuneo M, Rowe JD, et al. Estimation of tulathromycin depletion in plasma and milk after subcutaneous injection in lactating goats using a nonlinear mixed-effects pharmacokinetic modeling approach. BMC Vet Res 2016;12:258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108. Washburn K, Fajt VR, Coetzee JF, et al. Pharmacokinetics of tulathromycin in nonpregnant adult ewes. J Vet Pharmacol Ther 2015;38:414416.

  • 109. MacKay EE, Washburn KE, Padgett AL, et al. Pharmacokinetics of tulathromycin in fetal sheep and pregnant ewes [published online ahead of print Jan 17, 2019]. J Vet Pharmacol Ther doi: 10.1111/jvp.12744.

    • Search Google Scholar
    • Export Citation
  • 110. Gatne MM, Yadav MH, Mahale TR. Pharmacokinetics of flunixin in buffalo calves after single intramuscular administration. Buffalo Bull 2012;31:214218.

    • Search Google Scholar
    • Export Citation
  • 111. Jayachandran C, Singh M, Banerjee N. Pharmacokinetics and distribution of sulfadimethoxine in plasma, milk and uterine fluid following oral-administration in buffalos. Indian J Anim Sci 1988;58:313346.

    • Search Google Scholar
    • Export Citation
  • 112. Sharma N, Gupta I. Study on the distribution of five sulphonamides in the milk of buffaloes. Indian Vet J 1982;59:440444.

  • 113. Sharma ND. Studies on the pharmacology of some sulfonamides in buffaloes. Vet Res Bull 1978;1:158159.

  • 114. Srivastava AK, Chaudhary RK, Bal MS. Pharmacokinetics, plasma protein binding and dosage regimen of sulphadimethoxine in buffalo calves. Indian J Anim Sci 1996;66:215218.

    • Search Google Scholar
    • Export Citation
  • 115. Adamson RH, Bridges JW, Kibby MR, et al. The fate of sulphadimethoxine in primates compared with other species. Biochem J 1970;118:4145.

  • 116. DiCarlo FJ, Malament SG, Haynes LJ, et al. Metabolism of N1-(2-methyl-6-methoxy-4-pyrimidinyl) sulfanilamide (sulfamethomidine) in the rat, the rabbit, and the dog. Toxicol Appl Pharmacol 1962;4:475488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117. Imamura Y, Ichibagase H. Effects of simultaneous administration of drugs on absorption and excretion. II. Effects of non-steroidal anti-inflammatory drugs on absorption and excretion of sulfadimethoxine in rabbits. Chem Pharm Bull (Tokyo) 1973;21:668671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118. Imamura Y, Mori H, Ichibagase H. Effect of simultaneous administration of drugs on absorption and excretion. XV. Effect of probenecid on plasma protein binding of sulfadimethoxine in rabbits: the role of N4-acetylsulfadimethoxine, the major metabolite of sulfadimethoxine. Chem Pharm Bull (Tokyo) 1983;31:274278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 119. Imamura Y, Mori H, Otagiri M. Differential effects of ketoprofen on the pharmacokinetics of sulphadimethoxine in fast and slow acetylator rabbits. J Pharm Pharmacol 1990;42:6263.

    • Search Google Scholar
    • Export Citation
  • 120. Imamura Y, Nakamura H, Otogiri M. Effect of phenylbutazone on serum protein binding and pharmacokinetic behavior of sulfadimethoxine in rabbits, dogs and rats. J Pharmacobiodyn 1989;12:208215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121. Jakovlev VP, Bobrov VI, Rudzit EA. Comparative studies of the pharmacokinetics of long-acting sulfanilamides in animals, in Proceedings. 10th Int Congr Chemother 1978;1:375377

    • Search Google Scholar
    • Export Citation
  • 122. Ladefoged O. The influence of protein binding on the pharmacokinetics of sulphadimethoxine in rabbits. Acta Pharmacol Toxicol (Copenh) 1978;43:4350.

    • Search Google Scholar
    • Export Citation
  • 123. Ladefoged O, Christiansen SE. A computer method for the calculation of pharmacokinetic parameters after repetitive drug administration, and its use in calculations of kinetic parameters of sulphadimethoxine in pigs and rabbits. J Vet Pharmacol Ther 1979;2:9599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124. Polukhina LM, Padeiskaya EN, Isamukhamedov I, et al. Concentration of the prolonged-action sulfanilamides in the blood and spinal fluid of intact rabbits and in experimentally induced pneumococcal meningitis. Farmakol Toksikol 1965;28:592599.

    • Search Google Scholar
    • Export Citation
  • 125. Uno T, Kushima T, Hiraoka T. Studies on the metabolism of sulfadimethoxine. II. Determinations of metabolites in human and rabbit urine after oral administration of sulfadimethoxine. Chem Pharm Bull (Tokyo) 1967;15:12721276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126. Atta AH, Abdel-Aziz MI, Abo-Norage MA, et al. Disposition kinetics and tissue residues of sulphadimethoxine in rabbits. Bull Anim Health Prod Afr 1991;39:185190.

    • Search Google Scholar
    • Export Citation
  • 127. Zhu X, Wang S, Liu Q, et al. Simultaneous determination of benzimidazoles and their metabolites in plasma using high-performance liquid chromatography/tandem mass spectrometry: application to pharmacokinetic studies in rabbits. J AOAC Int 2011;94:839846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128. McKellar QA, Midgley DM, Galbraith EA, et al. Clinical and pharmacological properties of ivermectin in rabbits and guinea pigs. Vet Rec 1992;130:7173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129. Turner PV, Chen HC, Taylor WM. Pharmacokinetics of meloxicam in rabbits after single and repeat oral dosing. Comp Med 2006;56:6367.

    • Search Google Scholar
    • Export Citation
  • 130. Fredholm DV, Carpenter JW, KuKanich B, et al. Pharmacokinetics of meloxicam in rabbits after oral administration of single and multiple doses. Am J Vet Res 2013;74:636641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131. Carpenter JW, Pollock CG, Koch DE, et al. Single and multiple-dose pharmacokinetics of meloxicam after oral administration to the rabbit (Oryctolagus cuniculus). J Zoo Wildl Med 2009;40:601606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132. Tulliez JE, Durand EF, Bories GF. Metabolic fate and pharmacokinetics of tissue residues of the anticoccidial drug robenidine in the rabbit. Incidence of coprophagy on its bioavailability. J Agric Food Chem 1982;30:10711075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133. FARAD website. Available at: FARAD.org. Accessed May 16, 2019.

Advertisement

Extralabel drug use in wildlife and game animals

Maaike O. Clapham1Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Maaike O. Clapham in
Current site
Google Scholar
PubMed
Close
 BS
,
Krysta L. Martin1Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Krysta L. Martin in
Current site
Google Scholar
PubMed
Close
 PharmD
,
Jennifer L. Davis2FARAD, Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061.

Search for other papers by Jennifer L. Davis in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Ronald E. Baynes3FARAD, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.

Search for other papers by Ronald E. Baynes in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Zhoumeng Lin4FARAD, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.

Search for other papers by Zhoumeng Lin in
Current site
Google Scholar
PubMed
Close
 BMed, PhD
,
Thomas W. Vickroy5FARAD, Department of Physiological Science, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610.

Search for other papers by Thomas W. Vickroy in
Current site
Google Scholar
PubMed
Close
 PhD
,
Jim E. Riviere3FARAD, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.
4FARAD, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.

Search for other papers by Jim E. Riviere in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Lisa A. Tell1Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Lisa A. Tell in
Current site
Google Scholar
PubMed
Close
 DVM

Contributor Notes

Address correspondence to Dr. Tell (latell@ucdavis.edu).