• 1. USDA. 2012 Census of Agriculture. United States Summary and State Data. Available at: www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf. Accessed Jun 14, 2018.

    • Search Google Scholar
    • Export Citation
  • 2. Webb AI, Baynes RE, Craigmill AL, et al. Drugs approved for small ruminants (Erratum published in J Am Vet Med Assoc 2009;235:1142). J Am Vet Med Assoc 2004;224:520523.

    • Search Google Scholar
    • Export Citation
  • 3. FDA. Animal Drugs @ FDA. Available at: animaldrugsatfda.fda.gov/adafda/views/#/search. Accessed Jun 14, 2018.

  • 4. FARAD VetGRAM. Available at www.farad.org/vetgram/search.asp. Accessed Jun 19, 2018.

  • 5. FDA. Compliance policy guide Sec. 615.115 extralabel use of medicated feeds for minor species. Available at: www.fda.gov/ucm/groups/fdagov-public/@fdagov-afda-ice/documents/webcontent/ucm074659.pdf. Accessed Jun 13, 2018.

    • Search Google Scholar
    • Export Citation
  • 6. Extralabel drug use in animals. 21 CFR 530.

  • 7. Baynes RE, Payne M, Martin-Jimenez T, et al. Extralabel use of ivermectin and moxidectin in food animals. J Am Vet Med Assoc 2000;217:668671.

    • Search Google Scholar
    • Export Citation
  • 8. Craigmill AL, Rangel-Lugo M, Damian P, et al. Extralabel use of tranquilizers and general anesthetics. J Am Vet Med Assoc 1997;211:302304.

    • Search Google Scholar
    • Export Citation
  • 9. Damian P, Craigmill AL, Riviere JE. Extralabel use of non-steroidal anti-inflammatory drugs. J Am Vet Med Assoc 1997;211:860861.

  • 10. Gilman AG, Goodman L, Rall T. The pharmacological basis of therapeutics. 12th ed. New York: MacMillan Publishing Co, 1985;999.

  • 11. Food and Agriculture Organization of the United Nations-World Health Organization Expert Committee on Food Additives. Fenbendazole. Residues of some veterinary drugs in animals and foods. Rome: Food and Agriculture Organization of the United Nations, 1991;5770.

    • Search Google Scholar
    • Export Citation
  • 12. Waldhalm SJ, Criss EA, Neff-Davis CA, et al. Fenbendazole clearance from goat milk. Small Rumin Res 1989;2:7984.

  • 13. Blanchflower WJ, Cannavan A, Kennedy DG. Determination of fenbendazole and oxfendazole in liver and muscle using liquid chromatography-mass spectrometry. Analyst (Lond) 1994;119:13251328.

    • Search Google Scholar
    • Export Citation
  • 14. Düwel D, Fenbendazole II. Biological properties and activity. Pest Manag Sci 1977;8:550555.

  • 15. Lane VM, Villarroel A, Wetzlich SE, et al. Tissue residues of florfenicol in sheep. J Vet Pharmacol Ther 2008;31:178180.

  • 16. Ruiz JB, Zapata MN, Lopez CC, et al. Florfenicol concentrations in milk of lactating cows postreated by intramuscular or intrammary routes. Rev Mvz Cordoba 2010;15:20412050.

    • Search Google Scholar
    • Export Citation
  • 17. Escudero E, Carceles CM, Diaz MS, et al. Pharmacokinetics of moxidectin and doramectin in goats. Res Vet Sci 1999;67:177181.

  • 18. Marriner SE, McKinnon I, Bogan JA. The pharmacokinetics of ivermectin after oral and subcutaneous administration to sheep and horses. J Vet Pharmacol Ther 1987;10:175179.

    • Search Google Scholar
    • Export Citation
  • 19. Scott E, Kinabo L, McKellar Q. Pharmacokinetics of ivermectin after oral or percutaneous administration to adult milking goats. J Vet Pharmacol Ther 1990;13:432435.

    • Search Google Scholar
    • Export Citation
  • 20. Martin-Jiménez T, Baynes RE, Craigmill A, et al. Extrapolated withdrawal-interval estimator (EWE) algorithm: a quantitative approach to establishing extralabel withdrawal times. Regul Toxicol Pharmacol 2002;36:131137.

    • Search Google Scholar
    • Export Citation
  • 21. Riviere JE, Webb AI, Craigmill AL. Primer on estimating withdrawal times after extralabel drug use. J Am Vet Med Assoc 1998;213:966968.

    • Search Google Scholar
    • Export Citation
  • 22. Alvinerie M, Sutra J, Galtier P. Ivermectin in goat plasma and milk after subcutaneous injection. Vet Res 1993;24:417421.

  • 23. NRSP-7 animal drug request number 17. NRSP-7 studies of ivermectin in goats (SQ administration). Public Master File (PMF 3883).

  • 24. Musk GC, Netto JD, Maker GL, et al. Transplacental transfer of medetomidine and ketamine in pregnant ewes. Lab Anim 2012;46:4650.

  • 25. Waterman A, Livingston A. Studies on the distribution and metabolism of ketamine in sheep. J Vet Pharmacol Ther 1978;1:141147.

  • 26. Ali A, Afzal S, Ashraf M, et al. Pharmacokinetic study of ketoprofen in healthy sheep under local conditions of Pakistan. J Anim Plant Sci 2012;22:588592.

    • Search Google Scholar
    • Export Citation
  • 27. Arifah AK, Landoni MF, Lees P. Pharmacodynamics, chiral pharmacokinetics and PK-PD modelling of ketoprofen in the goat. J Vet Pharmacol Ther 2003;26:139150.

    • Search Google Scholar
    • Export Citation
  • 28. Kadir A, Lees P. Pharmacodynamic and pharmacokinetic studies on ketoprofen in sheep. J Vet Pharmacol Ther 1997;20(suppl 1):166167.

  • 29. Landoni M, Comas W, Mucci N, et al. Enantiospecific pharmacokinetics and pharmacodynamics of ketoprofen in sheep. J Vet Pharmacol Ther 1999;22:349359.

    • Search Google Scholar
    • Export Citation
  • 30. Musser J, Anderson K, Tyczkowska K. Pharmacokinetic parameters and milk concentrations of ketoprofen after administration as a single intravenous bolus dose to lactating goats. J Vet Pharmacol Ther 1998;21:358363.

    • Search Google Scholar
    • Export Citation
  • 31. Bloedow DC, Ralston DH, Hargrove JC. Lidocaine pharmacokinetics in pregnant and nonpregnant sheep. J Pharm Sci 1980;69:3237.

  • 32. Kennedy RL, Bell JU, Miller RP, et al. Uptake and distribution of lidocaine in fetal lambs. Anesthesiology 1990;72:483489.

  • 33. Upton RN, Nancarrow C, McLean CF, et al. The in vivo blood, fat and muscle concentrations of lignocaine and bupivacaine in the hindquarters of sheep. Xenobiotica 1991;21:1322.

    • Search Google Scholar
    • Export Citation
  • 34. Alvinerie M, Escudero E, Sutra JF, et al. The pharmacokinetics of moxidectin after oral and subcutaneous administration to sheep. Vet Res 1998;29:113118.

    • Search Google Scholar
    • Export Citation
  • 35. Vandaële É, Veillet F. Dictionnaire des medicaments veterinaires et des produits de sante animale diagnostic, dietetique, hygiene, petit materiel. Cedex, France: Editions du Point Veterinaire, 1997;459461.

    • Search Google Scholar
    • Export Citation
  • 36. Gayrard V, Alvinerie M, Toutain PL. Comparison of pharmacokinetic profiles of doramectin and ivermectin pour-on formulations in cattle. Vet Parasitol 1999;81:4755.

    • Search Google Scholar
    • Export Citation
  • 37. Payne MA, Babish JG, Bulgin M, et al. Serum pharmacokinetics and tissue and milk residues of oxytetracycline in goats following a single intramuscular injection of a long-acting preparation and milk residues following a single subcutaneous injection. J Vet Pharmacol Ther 2002;25:2532.

    • Search Google Scholar
    • Export Citation
  • 38. Sun Y, Peng Y, Aksornkoae N, et al. Controlled release of oxytetracycline in sheep. J Control Release 2002;85:125134.

  • 39. The European Agency for the Evaluation of Medicinal Products. Thiopental sodium summary report. Available at: www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500015548.pdf. Accessed Jul 9, 2018.

    • Search Google Scholar
    • Export Citation
  • 40. Ilkiw JE, Benthuysen JA, Ebling WF, et al. A comparative study of the pharmacokinetics of thiopental in the rabbit, sheep and dog. J Vet Pharmacol Ther 1991;14:134140.

    • Search Google Scholar
    • Export Citation
  • 41. Rae J. The fate of pentobarbitone and thiopentone in the sheep. Res Vet Sci 1962;3:399407.

  • 42. Sharma R, Stowe C, Good A. Studies on the distribution and metabolism of thiopental in cattle, sheep, goats and swine. J Pharmacol Exp Ther 1970;172:128137.

    • Search Google Scholar
    • Export Citation
  • 43. Clothier KA, Leavens T, Griffith RW, et al. Tulathromycin assay validation and tissue residues after single and multiple subcutaneous injections in domestic goats (Capra aegagrus hircus). J Vet Pharmacol Ther 2012;35:113120.

    • Search Google Scholar
    • Export Citation
  • 44. Clothier KA, Leavens T, Griffith RE, et al. Pharmacokinetics of tulathromycin after single and multiple subcutaneous injections in domestic goats (Capra aegagrus hircus). J Vet Pharmacol Ther 2011;34:448454.

    • Search Google Scholar
    • Export Citation
  • 45. Romanet J, Smith GW, Leavens TL, et al. Pharmacokinetics and tissue elimination of tulathromycin following subcutaneous administration in meat goats. Am J Vet Res 2012;73:16341640.

    • Search Google Scholar
    • Export Citation
  • 46. Young G, Smith GW, Leavens TL, et al. Pharmacokinetics of tulathromycin following subcutaneous administration in meat goats. Res Vet Sci 2011;90:477479.

    • Search Google Scholar
    • Export Citation
  • 47. Garcia-Villar R, Toutain P, Alvinerie M, et al. The pharmacokinetics of xylazine hydrochloride: an interspecific study. J Vet Pharmacol Ther 1981;4:8792.

    • Search Google Scholar
    • Export Citation
  • 48. Muge DK, Chambers JP, Livingston A. Radioreceptor assay for determination of xylazine and medetomidine in sheep plasma. J Vet Pharmacol Ther 1995;18:2429.

    • Search Google Scholar
    • Export Citation
  • 49. Putter J, Sagner G. Chemical studies to detect residues of xylazine hydrochloride. Vet Med Rev 1973;2:145159.

  • 50. Food and Agriculture Organization of the United Nations-World Health Organization Expert Committee on Food Additives. Xylazine. Residues of some veterinary drugs in animals and foods. Rome: Food and Agriculture Organization of the United Nations, 1997;119125.

    • Search Google Scholar
    • Export Citation
  • 51. Jernigan AD, Wilson RC, Booth NH, et al. Comparative pharmacokinetics of yohimbine in steers, horses and dogs. Can J Vet Res 1988;52:172176.

    • Search Google Scholar
    • Export Citation
  • 52. FDA. 21 CFR part 530. New animal drugs; cephalosporin drugs; extralabel animal drug use; order of prohibition. Fed Regist 2012;77:735745.

    • Search Google Scholar
    • Export Citation
  • 53. Doré E, Angelos JA, Rowe JD, et al. Pharmacokinetics of ceftiofur crystalline free acid after single subcutaneous administration in lactating and nonlactating domestic goats (Capra aegagrus hircus). J Vet Pharmacol Ther 2011;34:2530.

    • Search Google Scholar
    • Export Citation
  • 54. Rivera-Garcia S, Angelos JA, Rowe JD, et al. Pharmacokinetics of ceftiofur crystalline-free acid following subcutaneous administration of a single dose to sheep. Am J Vet Res 2014;75:290295.

    • Search Google Scholar
    • Export Citation
  • 55. Waraich GS, Sidhu PK, Daundkar PS, et al. Pharmacokinetic and pharmacodynamic characterization of ceftiofur crystalline-free acid following subcutaneous administration in domestic goats. J Vet Pharmacol Ther 2017;40:429438.

    • Search Google Scholar
    • Export Citation
  • 56. Garrett EF, Dirikolu L, Grover GS. Milk and serum concentration of ceftiofur following intramammary infusion in goats. J Vet Pharmacol Ther 2015;38:569574.

    • Search Google Scholar
    • Export Citation
  • 57. Australian Pesticides and Veterinary Medicines Authority. Public chemical registration information system search. Available at: portal.apvma.gov.au/pubcris. Accessed Jun 12, 2018.

    • Search Google Scholar
    • Export Citation
  • 58. New Zealand Ministry for Primary Industries. ACVM register—veterinary medicines, agricultural chemicals and vertebrate toxic agents. Available at: eatsafe.nzfsa.govt.nz/web/public/acvm-register. Accessed Jun 12, 2018.

    • Search Google Scholar
    • Export Citation
  • 59. United Kingdom Veterinary Medicines Directorate. Product information database. Available at: www.vmd.defra.gov.uk/ProductInformationDatabase/. Accessed Jun 14, 2018.

    • Search Google Scholar
    • Export Citation
  • 60. Ireland Health Products Regulatory Authority. Available at: www.hpra.ie/. Accessed Jun 12, 2018.

  • 61. Ali BH, Al-Qarawi AA, Hashaad M. Comparative plasma pharmacokinetics and tolerance of florfenicol following intramuscular and intravenous administration to camels, sheep and goats. Vet Res Commun 2003;27:475483.

    • Search Google Scholar
    • Export Citation
  • 62. Atef M, El-Gendi AY, Amer AM, et al. Effect of three anthelmentics on disposition kinetics of florfenicol in goats. Food Chem Toxicol 2010;48:33403344.

    • Search Google Scholar
    • Export Citation
  • 63. Atef M, El-Gendi AY, Aziza MM, et al. Pharmacokinetic properties of florfenicol in Egyptian goats. Dtsch Med Wochenschr 2000;107:147150.

    • Search Google Scholar
    • Export Citation
  • 64. Atef M, El Gendi AY, Amer AM, et al. Disposition kinetics of florfenicol in goats by using two analytical methods. J Vet Med A Physiol Pathol Clin Med 2001;48:129136.

    • Search Google Scholar
    • Export Citation
  • 65. Lashev LD, Haritova A. Comparative allometric analysis of pharmacokinetics of florfenicol and thiamphenicol. Bulg J Vet Med 2006;9:115122.

    • Search Google Scholar
    • Export Citation
  • 66. Lavy E, Ziv G, Soback S, et al. Clinical pharmacology of florfenicol in lactating goats. Acta Vet Scand 1991;87:133136.

  • 67. Kawalek JC, Howard KD, Jones Y, et al. Depletion of florfenicol in lactating dairy cows after intramammary and subcutanteous administration. J Vet Pharmacol Ther 2016; 39:602611.

    • Search Google Scholar
    • Export Citation
  • 68. El-Sheikh WM, Shaheen HM, El-Ghoneimy A. Comparative pharmacokinetics of florfenicol after intravenous, intramuscular and subcutaneous injection in sheep. Assiut Vet Med J 2009;55:100109.

    • Search Google Scholar
    • Export Citation
  • 69. Shen J, Li X, Jiang H, et al. Bioavailability and pharmacokinetics of florfenicol in healthy sheep. J Vet Pharmacol Ther 2004;27:163168.

    • Search Google Scholar
    • Export Citation
  • 70. Pérez-Fernández R, Cazanga V, Jeldres JA, et al. Plasma and tissue disposition of florfenicol in Escherichia coli lipopolysaccharide-induced endotoxaemic sheep. Xenobiotica 2017;47:408415.

    • Search Google Scholar
    • Export Citation
  • 71. FDA. General principles for evaluating the human food safety of new animal drugs used in food-producing animals: guidance for industry. VI: Establishing a withdrawal period. Rockville, Md: US Department of Health and Human Services, FDA, Center for Veterinary Medicine, 2005;27. Available at: www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/ucm052180.pdf. Accessed Jul 16, 2018.

    • Search Google Scholar
    • Export Citation
  • 72. Cheng Z, McKeller Q, Nolan A. Pharmacokinetic studies of flunixin meglumine and phenylbutazone in plasma, exudate and transudate in sheep. J Vet Pharmacol Ther 1998;21:315321.

    • Search Google Scholar
    • Export Citation
  • 73. El-Hewaity M. Influence of flunixin on the disposition kinetic of cefepime in goats. Adv Pharmacol Sci 2014;2014:471517.

  • 74. Königsson K, Törneke K, Engeland I, et al. Pharmacokinetics and pharmacodynamic effects of flunixin after intravenous, intramuscular and oral administration to dairy goats. Acta Vet Scand 2003;44:153159.

    • Search Google Scholar
    • Export Citation
  • 75. Marini D, Pippia J, Colditz IG, et al. Palatability and pharmacokinetics of flunixin when administered to sheep through feed. PeerJ 2016;4:e1800.

    • Search Google Scholar
    • Export Citation
  • 76. Welsh EM, McKellar QA, Nolan AM. The pharmacokinetics of flunixin meglumine in the sheep. J Vet Pharmacol Ther 1993;16:181188.

  • 77. CDMV. Candian compendium of veterinary products. Available at: www.cdmv.com/en/monographs.sn. Accessed Jun 12, 2018.

  • 78. Stock ML, Coetzee JF, KuKanich B, et al. Pharmacokinetics of intravenously and orally administered meloxicam in sheep. Am J Vet Res 2013;74:779783.

    • Search Google Scholar
    • Export Citation
  • 79. Karademir U, Erdogan H, Boyacioglu M, et al. Pharmacokinetics of meloxicam in adult goats: a comparative study of subcutaneous, oral and intravenous administration. N Z Vet J 2016;64:165168.

    • Search Google Scholar
    • Export Citation
  • 80. Ingvast-Larsson C, Högberg M, Mengistu U, et al. Pharmacokinetics of meloxicam in adult goats and its analgesic effect in disbudded kids. J Vet Pharmacol Ther 2011;34:6469.

    • Search Google Scholar
    • Export Citation
  • 81. Wani AR, Nabi SU, Bhat S, et al. Pharmacokinetic parameters of meloxicam after its oral administration in goat. Vet World 2014;7:141145.

    • Search Google Scholar
    • Export Citation
  • 82. Martin-Jiménez T, Craigmill AL, Riviere JE. Extralabel use of oxytetracycline. J Am Vet Med Assoc 1997;211:4244.

  • 83. California State Legislature. SB-27, Hill. Livestock: use of antimicrobial drugs. Available at: www.leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB27. Accessed Jun 12, 2018.

    • Search Google Scholar
    • Export Citation
  • 84. Edwards SJ. Penicillin levels in the milk following intramuscular injection. Vet Rec 1966;78:583585.

  • 85. Edwards SJ, Haskins MD. The determination of antibiotic levels in blood and in milk following parenteral and intramammary injection. J Comp Pathol 1953;63:5367.

    • Search Google Scholar
    • Export Citation
  • 86. Zeng SS, Escobar EN, Brown-Crowder I. Evaluation of screening tests for detection of antibiotic residues in goat milk. Small Rumin Res 1996;21:155160.

    • Search Google Scholar
    • Export Citation
  • 87. Zeng SS, Hart S, Escobar EN, et al. Validation of antibiotic residue tests for dairy goats. J Food Prot 1998;61:344349.

  • 88. Ziv G. Concentrations and residues of antibiotics in the milk of goats after parenteral and intramammary administration, in Proceedings. Comite Espanol III Symposium Internacional de Ordeno Mecanico de Pequenos Rumiantes 1984;513528.

    • Search Google Scholar
    • Export Citation
  • 89. Grismer B, Rowe JD, Carlson J, et al. Pharmacokinetics of tulathromycin in plasma and milk samples after a single subcutaneous injection in lactating goats (Capra hircus). J Vet Pharmacol Ther 2014;37:205208.

    • Search Google Scholar
    • Export Citation
  • 90. Lin Z, Cuneo M, Rowe JD, et al. Estimation of tulathromycin depletion in plasma and milk after subcutaneous injection in lactating goats using a nonlinear mixed-effects pharmacokinetic modeling approach. BMC Vet Res 2016;12:258.

    • Search Google Scholar
    • Export Citation
  • 91. Washburn K, Fajt VR, Coetzee JF, et al. Pharmacokinetics of tulathromycin in nonpregnant adult ewes. J Vet Pharmacol Ther 2015;38:414416.

    • Search Google Scholar
    • Export Citation
  • 92. Gehring R, Smith GW. An overview of factors affecting the disposition of intramammary preparations used to treat bovine mastitis. J Vet Pharmacol Ther 2006;29:237241.

    • Search Google Scholar
    • Export Citation
  • 93. Karzis J, Donkin EF, Petzer IM. Intramammary antibiotics in dairy goats: effect of stage of lactation, parity and milk volume on withdrawal periods, and the effect of treatment on milk compositional quality. Onderstepoort J Vet Res 2007;74:243249.

    • Search Google Scholar
    • Export Citation
  • 94. Smith GW, Gehring R, Riviere JE, et al. Elimination kinetics of ceftiofur hydrochloride after intramammary administration in lactating dairy cows. J Am Vet Med Assoc 2004;224:18271830.

    • Search Google Scholar
    • Export Citation
  • 95. Stockler RM, Morin DE, Lantz RK, et al. Effect of milking frequency and dosing interval on the pharmacokinetics of cephapirin after intramammary infusion in lactating dairy cows. J Dairy Sci 2009;92:42624275.

    • Search Google Scholar
    • Export Citation
  • 96. Buswell JF, Knight CH, Barber DM. Antibiotic persistence and tolerance in the lactating goat following intramammary therapy. Vet Rec 1989;125:301303.

    • Search Google Scholar
    • Export Citation
  • 97. Fuertes JA, Gonzalo C, Carriedo JA, et al. Parameters of test day milk yield and milk components for dairy ewes. J Dairy Sci 1998;81:13001307.

    • Search Google Scholar
    • Export Citation
  • 98. Leitner G, Merin U, Silanikove N. Effects of glandular bacterial infection and stage of lactation on milk clotting parameters: comparison among cows, goats and sheep. Int Dairy J 2011;21:279285.

    • Search Google Scholar
    • Export Citation
  • 99. Leitner G, Silanikove N, Merin U. Estimate of milk and curd yield loss of sheep and goats with intramammary infection and its relation to somatic cell count. Small Rumin Res 2008;74:221225.

    • Search Google Scholar
    • Export Citation
  • 100. Long PE, Heavner JE, Ziv G, et al. Depletion of antibiotics from the mammary gland of goats. J Dairy Sci 1984;67:707712.

  • 101. Barlow J. Mastitis therapy and antimicrobial susceptibility: a multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. J Mammary Gland Biol Neoplasia 2011;16:383407.

    • Search Google Scholar
    • Export Citation
  • 102. Bergonier D, de Crémoux R, Rupp R, et al. Mastitis of dairy small ruminants. Vet Res 2003;34:689716.

  • 103. Lainesse C, Gehring R, Pasloske K, et al. Challenges associated with the demonstration of bioequivalence of intramammary products in ruminants. J Vet Pharmacol Ther 2012;35:6579.

    • Search Google Scholar
    • Export Citation
  • 104. Pengov A, Kirbis A. Risks of antibiotic residues in milk following intramammary and intramuscular treatments in dairy sheep. Anal Chim Acta 2009;637:1317.

    • Search Google Scholar
    • Export Citation
  • 105. Contreras A, Paape MJ, Di Carlo AL, et al. Evaluation of selected antibiotic residue screening tests for milk from individual goats. J Dairy Sci 1997;80:11131118.

    • Search Google Scholar
    • Export Citation
  • 106. Park Y. Improving goat milk. In: Griffiths MW, ed. Improving the safety and quality of milk. Cambridge, England: Woodhead Publishing, 2010;304346.

    • Search Google Scholar
    • Export Citation

Advertisement

Extralabel drug use in small ruminants

View More View Less
  • 1 Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.
  • | 2 Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.
  • | 3 FARAD, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061.
  • | 4 FARAD, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.
  • | 5 FARAD, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.
  • | 6 FARAD, Department of Physiological Science, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610.
  • | 7 FARAD, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.
  • | 8 FARAD, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.
  • | 9 Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Contributor Notes

Address correspondence to Dr. Tell (latell@ucdavis.edu).