• 1. Food Animal Residue Avoidance Databank. Available at: www.farad.org. Accessed Dec 28, 2016.

  • 2. Riviere JE, Craigmill AL, Sundlof SF. CRC handbook of comparative pharmacokinetics and residues of veterinary antimicrobials. Boca Raton, Fla: CRC Press Inc, 1991.

    • Search Google Scholar
    • Export Citation
  • 3. Craigmill AL, Sundlof SF, Riviere JE. Handbook of comparative pharmacokinetics and residues of veterinary therapeutic drugs. Boca Raton, Fla: CRC Press Inc, 1994.

    • Search Google Scholar
    • Export Citation
  • 4. Sundlof SF, Riviere JE, Craigmill AL. Handbook of comparative veterinary pharmacokinetics and residues of pesticides and environmental contaminants. Boca Raton, Fla: CRC Press Inc, 1995.

    • Search Google Scholar
    • Export Citation
  • 5. Craigmill AL, Riviere JE, Webb AI. Tabulation of FARAD comparative and veterinary pharmacokinetic data. Ames, Iowa: Blackwell Publishing, 2006.

    • Search Google Scholar
    • Export Citation
  • 6. Animal Medicinal Drug Use Clarification Act of 1994. 21 USC § 301.

  • 7. Food Animal Residue Avoidance Database program. 7 USC § 7642.

  • 8. Baynes RE, Martin-Jiménez T, Craigmill AL, et al. Estimating provisional acceptable residues for extralabel drug use in livestock. Regul Toxicol Pharmacol 1999; 29: 287299.

    • Search Google Scholar
    • Export Citation
  • 9. FDA. Guidance for industry #3. General principles for evaluating the human food safety of new animal drugs used in food-producing animals (Draft revised guidance). July 2016. Available at: www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndusGui/ucm052180.pdf. Accessed Dec 22, 2016.

    • Search Google Scholar
    • Export Citation
  • 10. Gehring R, Baynes RE, Craigmill AL, et al. Feasibility of using half-life multipliers to estimate extended withdrawal intervals following the extralabel use of drugs in food producing animals. J Food Prot 2004; 67: 555560.

    • Search Google Scholar
    • Export Citation
  • 11. Kissell LW, Leavens TL, Baynes RE, et al. Comparison of flunixin pharmacokinetics and milk elimination in healthy cows and cows with mastitis. J Am Vet Med Assoc 2015; 246: 118125.

    • Search Google Scholar
    • Export Citation
  • 12. Smith DJ, Shelver WL, Baynes RE, et al. Excretory, secretory and tissue residues after label and extra-label administration of flunixin meglumine to saline or lipopolysaccharideexposed dairy cows. J Agric Food Chem 2015; 63: 48934901.

    • Search Google Scholar
    • Export Citation
  • 13. Sidhu PK, Gehring R, Mzyk DA, et al. Avoiding violative flunixin meglumine residues in cattle and swine. J Am Vet Med Assoc 2017; 250: 182189.

    • Search Google Scholar
    • Export Citation
  • 14. Lin Z, Vahl CI, Riviere JE. Human food safety implications of variation in food animal drug metabolism. Sci Rep 2016; 6: 27907.

  • 15. Riviere JE. Pharmacologic principles of residue avoidance for veterinary practitioners. J Am Vet Med Assoc 1991; 198: 809816.

  • 16. Riviere JE, Webb AI, Craigmill AL. Primer on estimating withdrawal times after extralabel drug use. J Am Vet Med Assoc 1998; 213: 966968.

    • Search Google Scholar
    • Export Citation
  • 17. Baynes RE, Riviere JE. Strategies for reducing drug and chemical residues in food animals: international approaches to residue avoidance, management and testing. New York: Wiley, 2014.

    • Search Google Scholar
    • Export Citation
  • 18. Martín-Jiménez T, Riviere JE. Population pharmacokinetics in veterinary medicine: potential uses for therapeutic drug monitoring and prediction of tissue residues. J Vet Pharmacol Ther 1998; 21: 167189.

    • Search Google Scholar
    • Export Citation
  • 19. Wu H, Baynes RE, Tell LA, et al. Prediction of flunixin tissue residue concentrations in livers from diseased cattle. Food Chem Toxicol 2013; 62: 876879.

    • Search Google Scholar
    • Export Citation
  • 20. Li M, Gehring R, Tell L, et al. Interspecies mixed effect pharmacokinetic modeling of penicillin G in cattle and swine. Antimicrob Agents Chemother 2014; 58: 44954503.

    • Search Google Scholar
    • Export Citation
  • 21. Buur JL, Baynes RE, Craigmill AL, et al. Development of a physiologic-based pharmacokinetic model for estimating sulfamethazine concentrations in swine and application to prediction of violative residues in edible tissues. Am J Vet Res 2005; 66: 16861693.

    • Search Google Scholar
    • Export Citation
  • 22. Buur JL, Baynes RE, Smith G, et al. Use of probabilistic modeling within a physiologically based pharmacokinetic model to predict sulfamethazine residue withdrawal times in edible tissues in swine. Antimicrob Agents Chemother 2006; 50: 23442351.

    • Search Google Scholar
    • Export Citation
  • 23. Leavens TL, Tell LA, Kissell LW, et al. Development of a physiologically based pharmacokinetic model for flunixin in cattle (Bos taurus). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31: 15061521.

    • Search Google Scholar
    • Export Citation
  • 24. Lin Z, Gehring R, Mochel JP, et al. Mathematical modeling and simulation in animal health—part II: principles, methods, applications and value of physiologically based pharmacokinetic models in veterinary medicine and food safety assessment. J Vet Pharmacol Ther 2016; 39: 421438.

    • Search Google Scholar
    • Export Citation
  • 25. Riviere JE, Martin-Jiménez T, Sundlof SF, et al. Interspecies allometric analysis of the comparative pharmacokinetics of 44 drugs across veterinary and laboratory species. J Vet Pharmacol Ther 1997; 20: 453463.

    • Search Google Scholar
    • Export Citation
  • 26. Huang Q, Gehring R, Tell LA, et al. Interspecies allometric meta-analysis of the comparative pharmacokinetics of 85 drugs across veterinary and laboratory animal species. J Vet Pharmacol Ther 2015; 38: 214226.

    • Search Google Scholar
    • Export Citation
  • 27. Needham ML, Webb AL, Baynes RE, et al. Current update on drugs for game bird species. J Am Vet Med Assoc 2007; 231: 15061508.

  • 28. Buur JL, Baynes RE, Riviere JE. Estimating meat withdrawal times in pigs exposed to melamine contaminated feed using a physiologically based pharmacokinetic model. Regul Toxicol Pharmacol 2008; 51: 324331.

    • Search Google Scholar
    • Export Citation
  • 29. Baynes RE, DeDonder K, Kissell L, et al. Health concerns and management of select veterinary drug residues. Food Chem Toxicol 2016; 88: 112122.

    • Search Google Scholar
    • Export Citation
  • 30. Marmulak T, Tell LA, Gehring R, et al. Egg residue considerations during the treatment of backyard poultry. J Am Vet Med Assoc 2015; 247: 13881395.

    • Search Google Scholar
    • Export Citation
  • 31. DeDonder KD, Gehring R, Tell LA, et al. Protocol for diversion of confirmed positive bulk raw milk tankers to calf ranchers—a review of the pharmacokinetics of tetracyclines and sulfonamides in veal calves. Anim Health Res Rev 2016; 17: 127136.

    • Search Google Scholar
    • Export Citation
  • 32. Prohibited and restricted drugs in food animals. Available at: www.farad.org/eldu/prohibit.asp. Accessed Dec 28, 2016.

  • 33. Mzyk D, Gehring R, Tell AL, et al. Considerations for extra-label drug use in calves. J Am Vet Med Assoc 2017; in press.

  • 34. FARAD Digest list. Available at: www.farad.org/publications/digests.asp. Accessed on Dec 29, 2016.

  • 35. Damian P, Craigmill AL, Riviere JE. Breaking new ground. J Am Vet Med Assoc 1997; 210: 633634.

  • 36. Damian P, Craigmill AL, Riviere JE. Extralabel use of nonsteroidal anti-inflammatory drugs. J Am Vet Med Assoc 1997; 211: 860861.

    • Search Google Scholar
    • Export Citation
  • 37. Baynes RE, Craigmill AL, Riviere JE. Residue avoidance after topical application of veterinary drugs and parasiticides. J Am Vet Med Assoc 1997; 210: 12881289.

    • Search Google Scholar
    • Export Citation
  • 38. Baynes RE, Payne M, Martin-Jiménez T, et al. Extralabel use of ivermectin and moxidectin in food animals. J Am Vet Med Assoc 2000; 217: 668671.

    • Search Google Scholar
    • Export Citation
  • 39. Martin-Jiménez T, Craigmill AL, Riviere JE. Extralabel use of oxytetracycline. J Am Vet Med Assoc 1997; 211: 4244.

  • 40. Craigmill AL, Rangel-Lugo M, Damian P, et al. Extralabel use of tranquilizers and general anesthetics. J Am Vet Med Assoc 1997; 211: 302304.

    • Search Google Scholar
    • Export Citation
  • 41. Rangel-Lugo M, Payne M, Webb AI, et al. Prevention of antibiotic residues in veal calves fed colostrum. J Am Vet Med Assoc 1998; 213: 4042.

    • Search Google Scholar
    • Export Citation
  • 42. Payne MA, Baynes RE, Sundlof SF, et al. Drugs prohibited from extralabel use in food animals. J Am Vet Med Assoc 1999; 215: 2832.

    • Search Google Scholar
    • Export Citation
  • 43. Payne MA, Craigmill AL, Riviere JE, et al. Extralabel use of penicillin in food animals. J Am Vet Med Assoc 2006; 229: 14011403.

  • 44. Haskell SR, Gehring R, Payne MA, et al. Update on FARAD food animal drug witholding recommendations. J Am Vet Med Assoc 2003; 223: 12771278.

    • Search Google Scholar
    • Export Citation
  • 45. Haskell SR, Payne MA, Webb AI, et al. Antidotes in food animal practice. J Am Vet Med Assoc 2005; 226: 884887.

  • 46. Haskell SR, Payne MA, Webb AI, et al. Current approved drugs for aquatic species. J Am Vet Med Assoc 2004; 224: 5051.

  • 47. Wang J, Gehring R, Baynes RE, et al. Evaluation of the advisory services provided by the Food Animal Residue Avoidance Databank. J Am Vet Med Assoc 2003; 223: 15961598.

    • Search Google Scholar
    • Export Citation
  • 48. Webb AI, Baynes RE, Craigmill AL, et al. Drugs approved for small ruminants. J Am Vet Med Assoc 2004; 224: 520523.

  • 49. Smith GW, Gehring R, Craigmill AL, et al. Extralabel intrammary use of drugs in dairy cattle. J Am Vet Med Assoc 2005; 226: 19941996.

    • Search Google Scholar
    • Export Citation
  • 50. Smith GW, Davis JL, Tell LA, et al. Extralabel use of nonsteroidal anti-inflammatory drugs in cattle. J Am Vet Med Assoc 2008; 232: 697701.

    • Search Google Scholar
    • Export Citation
  • 51. Gehring R, Haskell SR, Payne MA, et al. Aminoglycoside residues in food of animal origin. J Am Vet Med Assoc 2005; 227: 6366.

  • 52. KuKanich B, Gehring R, Webb AI, et al. Effect of formulation and route of administration on tissue residues and withdrawal times. J Am Vet Med Assoc 2005; 227: 15741577.

    • Search Google Scholar
    • Export Citation
  • 53. Davis JL, Smith GW, Baynes RE, et al. Update on drugs prohibited from extralabel use in food animals. J Am Vet Med Assoc 2009; 235: 528534.

    • Search Google Scholar
    • Export Citation
  • 54. DeDonder KD, Gehring R, Baynes RA, et al. Effects of new sampling protocols on procaine penicillin G withdrawal intervals for cattle. J Am Vet Med Assoc 2013; 243: 14081412.

    • Search Google Scholar
    • Export Citation
  • 55. FARAD Online Request System. Available at: cafarad.ucdavis.edu/farmweb/index.aspx. Accessed Dec 29, 2016.

Advertisement

Guide to FARAD resources: historical and future perspectives

Jim E. Riviere DVM, PhD1, Lisa A. Tell DVM2, Ronald E. Baynes DVM, PhD3, Thomas W. Vickroy PhD4, and Ronette Gehring BVSc, MMedVet5
View More View Less
  • 1 Food Animal Residue Avoidance and Depletion Program (FARAD), Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 (Riviere, Gehring)
  • | 2 FARAD, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (Tell);
  • | 3 FARAD, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606 (Baynes)
  • | 4 FARAD, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610 (Vickroy).
  • | 5 Food Animal Residue Avoidance and Depletion Program (FARAD), Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 (Riviere, Gehring)

The FARAD manages the Food Animal Residue Avoidance Databank and has been serving the veterinary profession for 35 years. It is funded and sponsored by the USDA National Institute of Food and Agriculture and is overseen and operated by faculty and staff within the colleges of veterinary medicine at the University of California-Davis, University of Florida, Kansas State University, and North Carolina State University.

The overarching goal of FARAD is to provide veterinary practitioners the most current and accurate information to facilitate the production of safe foods of animal origin through the prevention and mitigation of violative chemical (eg,

The FARAD manages the Food Animal Residue Avoidance Databank and has been serving the veterinary profession for 35 years. It is funded and sponsored by the USDA National Institute of Food and Agriculture and is overseen and operated by faculty and staff within the colleges of veterinary medicine at the University of California-Davis, University of Florida, Kansas State University, and North Carolina State University.

The overarching goal of FARAD is to provide veterinary practitioners the most current and accurate information to facilitate the production of safe foods of animal origin through the prevention and mitigation of violative chemical (eg,

Contributor Notes

Address correspondence to Dr. Riviere (JRiviere@ksu.edu).