Precision medicine: an opportunity for a paradigm shift in veterinary medicine

K. C. Kent Lloyd Department of Surgery, School of Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by K. C. Kent Lloyd in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Chand Khanna Ethos Veterinary Health, 20 Cabot Rd, Woburn, MA 01801.
The Oncology Service, 4926 Wisconsin Ave NW, Washington, DC 20016.

Search for other papers by Chand Khanna in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
William Hendricks Translational Genomics Research Institute, 445 N Fifth St, Phoenix, AZ 85004.

Search for other papers by William Hendricks in
Current site
Google Scholar
PubMed
Close
 PhD
,
Jeffrey Trent Translational Genomics Research Institute, 445 N Fifth St, Phoenix, AZ 85004.

Search for other papers by Jeffrey Trent in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Michael Kotlikoff Office of the Provost and College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Michael Kotlikoff in
Current site
Google Scholar
PubMed
Close
 VMD, PhD

Contributor Notes

Address correspondence to Dr. Lloyd (kclloyd@ucdavis.edu).
  • 1. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372: 793–795.

  • 2. The White House. Fact sheet: President Obama's Precision Medicine Initiative. Available at: www.whitehouse.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative. Accessed Oct 13, 2015.

  • 3. Daly MB, Pilarski R, Axilbund JE, et al. Genetic/familial high-risk assessment: breast and ovarian, version 1. 2014. J Natl Compr Canc Netw 2014; 12: 1326–1338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Neveling K, Feenstra I, Gilissen C, et al. A post hoc comparison of the utility of Sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat 2013; 34: 1721–1726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Hagemann IS, O'Neill PK, Erill I, et al. Diagnostic yield of targeted next-generation sequencing in various cancer types: an information-theoretic approach. Cancer Genet 2015; 208: 441–447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Röring M, Brummer T. Aberrant B-Raf signaling in human cancer—10 years from bench to bedside. Crit Rev Oncog 2012; 17: 97–121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Tiacci E, Trifonov V, Schiavoni G, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med 2011; 364: 2305–2315.

  • 9. Dietrich S, Glimm H, Andrulis M, et al. BRAF inhibition in refractory hairy-cell leukemia. N Engl J Med 2012; 366: 2038–2040.

  • 10. Corcoran RB, Ebi H, Turke AB, et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2012; 2: 227–235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Camidge DR, Bang YJ, Kwak EL, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 2012; 13: 1011–1019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Von Hoff DD, Stephenson JJ, Rosen P, et al. Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 2010; 28: 4877–4883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Barker AD, Sigman CC, Kelloff GJ, et al. I SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 2009; 86: 97–100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Prados MD, Byron SA, Tran NL, et al. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro Oncol 2015; 17: 1051–1063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Borad MJ, Champion MD, Egan JB, et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet [serial online]. 2014; 10: e1004135. Available at: journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004135. Accessed Feb 13, 2014.

    • Search Google Scholar
    • Export Citation
  • 16. LoRusso PM, Boerner SA, Pilat MJ, et al. Pilot trial of selecting molecularly guided therapy for patients with non–V600 BRAF-mutant metastatic melanoma: experience of the SU2C/MRA Melanoma Dream Team. Mol Cancer Ther 2015; 14: 1962–1971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Conley BA, Doroshow JH. Molecular analysis for therapy choice: NCI MATCH. Semin Oncol 2014; 41: 297–299.

  • 18. Kim ES, Herbst RS, Wistuba II, et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 2011; 1: 44–53.

  • 19. Saulnier Sholler GL, Bond JP, Bergendahl G, et al. Feasibility of implementing molecular guided therapy for the treatment of patients with relapsed or refractory neuroblastoma. Cancer Med 2015; 4: 871–886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Paoloni M, Davis S, Lana S, et al. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics [serial online]. 2009; 10;625. Available at: www.biomedcentral.com/1471-2164/10/625. Accessed Dec 23, 2009.

    • Search Google Scholar
    • Export Citation
  • 21. Paoloni M, Webb C, Mazcko C, et al. Prospective molecular profiling of canine cancers provides a clinically relevant comparative model for evaluating personalized medicine (PMed) trials. PLoS ONE [serial online]. 2014; 9: e90028. Available at: journals.plos.org/plosone/article?id=10.1371/journal.pone.0090028. Accessed Mar 1, 2014.

    • Search Google Scholar
    • Export Citation
  • 22. CDC. Leading causes of death. Available at: www.cdc.gov/nchs/fastats/leading-causes-of-death.htm. Accessed Sep 17, 2015.

  • 23. Spear BB, Heath-Chiozzi M, Huff J. Clinical application of pharmacogenetics. Trends Mol Med 2001; 7: 201–204.

Advertisement