• 1. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372: 793795.

  • 2. The White House. Fact sheet: President Obama's Precision Medicine Initiative. Available at: www.whitehouse.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative. Accessed Oct 13, 2015.

  • 3. Daly MB, Pilarski R, Axilbund JE, et al. Genetic/familial high-risk assessment: breast and ovarian, version 1. 2014. J Natl Compr Canc Netw 2014; 12: 13261338.

    • Search Google Scholar
    • Export Citation
  • 4. Neveling K, Feenstra I, Gilissen C, et al. A post hoc comparison of the utility of Sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat 2013; 34: 17211726.

    • Search Google Scholar
    • Export Citation
  • 5. Hagemann IS, O'Neill PK, Erill I, et al. Diagnostic yield of targeted next-generation sequencing in various cancer types: an information-theoretic approach. Cancer Genet 2015; 208: 441447.

    • Search Google Scholar
    • Export Citation
  • 6. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 10311037.

    • Search Google Scholar
    • Export Citation
  • 7. Röring M, Brummer T. Aberrant B-Raf signaling in human cancer—10 years from bench to bedside. Crit Rev Oncog 2012; 17: 97121.

  • 8. Tiacci E, Trifonov V, Schiavoni G, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med 2011; 364: 23052315.

  • 9. Dietrich S, Glimm H, Andrulis M, et al. BRAF inhibition in refractory hairy-cell leukemia. N Engl J Med 2012; 366: 20382040.

  • 10. Corcoran RB, Ebi H, Turke AB, et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2012; 2: 227235.

    • Search Google Scholar
    • Export Citation
  • 11. Camidge DR, Bang YJ, Kwak EL, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 2012; 13: 10111019.

    • Search Google Scholar
    • Export Citation
  • 12. Von Hoff DD, Stephenson JJ, Rosen P, et al. Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 2010; 28: 48774883.

    • Search Google Scholar
    • Export Citation
  • 13. Barker AD, Sigman CC, Kelloff GJ, et al. I SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 2009; 86: 97100.

    • Search Google Scholar
    • Export Citation
  • 14. Prados MD, Byron SA, Tran NL, et al. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro Oncol 2015; 17: 10511063.

    • Search Google Scholar
    • Export Citation
  • 15. Borad MJ, Champion MD, Egan JB, et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet [serial online]. 2014; 10: e1004135. Available at: journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004135. Accessed Feb 13, 2014.

    • Search Google Scholar
    • Export Citation
  • 16. LoRusso PM, Boerner SA, Pilat MJ, et al. Pilot trial of selecting molecularly guided therapy for patients with non–V600 BRAF-mutant metastatic melanoma: experience of the SU2C/MRA Melanoma Dream Team. Mol Cancer Ther 2015; 14: 19621971.

    • Search Google Scholar
    • Export Citation
  • 17. Conley BA, Doroshow JH. Molecular analysis for therapy choice: NCI MATCH. Semin Oncol 2014; 41: 297299.

  • 18. Kim ES, Herbst RS, Wistuba II, et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 2011; 1: 4453.

  • 19. Saulnier Sholler GL, Bond JP, Bergendahl G, et al. Feasibility of implementing molecular guided therapy for the treatment of patients with relapsed or refractory neuroblastoma. Cancer Med 2015; 4: 871886.

    • Search Google Scholar
    • Export Citation
  • 20. Paoloni M, Davis S, Lana S, et al. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics [serial online]. 2009; 10;625. Available at: www.biomedcentral.com/1471-2164/10/625. Accessed Dec 23, 2009.

    • Search Google Scholar
    • Export Citation
  • 21. Paoloni M, Webb C, Mazcko C, et al. Prospective molecular profiling of canine cancers provides a clinically relevant comparative model for evaluating personalized medicine (PMed) trials. PLoS ONE [serial online]. 2014; 9: e90028. Available at: journals.plos.org/plosone/article?id=10.1371/journal.pone.0090028. Accessed Mar 1, 2014.

    • Search Google Scholar
    • Export Citation
  • 22. CDC. Leading causes of death. Available at: www.cdc.gov/nchs/fastats/leading-causes-of-death.htm. Accessed Sep 17, 2015.

  • 23. Spear BB, Heath-Chiozzi M, Huff J. Clinical application of pharmacogenetics. Trends Mol Med 2001; 7: 201204.

Advertisement

Precision medicine: an opportunity for a paradigm shift in veterinary medicine

K. C. Kent Lloyd DVM, PhD1, Chand Khanna DVM, PhD2,3, William Hendricks PhD4, Jeffrey Trent PhD5, and Michael Kotlikoff VMD, PhD6
View More View Less
  • 1 Department of Surgery, School of Medicine, University of California-Davis, Davis, CA 95616.
  • | 2 Ethos Veterinary Health, 20 Cabot Rd, Woburn, MA 01801.
  • | 3 The Oncology Service, 4926 Wisconsin Ave NW, Washington, DC 20016.
  • | 4 Translational Genomics Research Institute, 445 N Fifth St, Phoenix, AZ 85004.
  • | 5 Translational Genomics Research Institute, 445 N Fifth St, Phoenix, AZ 85004.
  • | 6 Office of the Provost and College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Contributor Notes

Address correspondence to Dr. Lloyd (kclloyd@ucdavis.edu).