• 1. USDA APHIS. Urban chicken ownership in four US cities. Available at: www.aphis.usda.gov/animal_health/nahms/poultry/downloads/poultry10/Poultry10_dr_Urban_Chicken_Four.pdf. Accessed Apr 1, 2015.

    • Search Google Scholar
    • Export Citation
  • 2. Greenacre CB, Morishita TY, eds. Backyard poultry medicine and surgery: a guide for veterinary practitioners. Ames, Iowa: John Wiley & Sons, 2015.

    • Search Google Scholar
    • Export Citation
  • 3. US FDA. Guidance for industry #191: changes to approved NADAs–new NADAs vs. category II supplemental NADAs. Available at: www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM052460.pdf. Accessed Jun 23, 2015.

    • Search Google Scholar
    • Export Citation
  • 4. Kan CA, Petz M. Detecting residues of veterinary drugs in eggs. World Poult 2001; 17: 1617.

  • 5. Donoghue DJ. Mechanisms regulating drug and pesticide residue uptake by egg yolks: development of predictive models. Worlds Poult Sci J 2001; 57: 373380.

    • Search Google Scholar
    • Export Citation
  • 6. Donoghue DJ, Myers K. Imaging residue transfer into egg yolks. J Agric Food Chem 2000; 48: 64286430.

  • 7. Donoghue DJ, Hairston H, Henderson M, et al. Modeling drug residue uptake by eggs: yolks contain ampicillin residues even after drug withdrawal and nondetectability in the plasma. Poult Sci 1997; 76: 458462.

    • Search Google Scholar
    • Export Citation
  • 8. Donoghue DJ, Hairston H, Gaines SA, et al. Modeling residue uptake by eggs. 1. Similar drug residue patterns in developing yolks following injection with ampicillin or oxytetracycline. Poult Sci 1996; 75: 321328.

    • Search Google Scholar
    • Export Citation
  • 9. Macy E, Poon K-Y T. Self-reported antibiotic allergy incidence and prevalence: age and sex effects. Am J Med 2009; 122: 778.e1778.e7.

    • Search Google Scholar
    • Export Citation
  • 10. Kan CA, Petz M. Residues of veterinary drugs in eggs and their distribution between yolk and white. J Agric Food Chem 2000; 48: 63976403.

    • Search Google Scholar
    • Export Citation
  • 11. US FDA. Animal drugs @ FDA. Available at: www.accessdata.fda.gov/scripts/animaldrugsatfda/details.cfm?dn=140-338. Accessed Sep 10, 2015.

    • Search Google Scholar
    • Export Citation
  • 12. FARAD Vetgram. Available at: www.farad.org/vetgram/search.asp. Accessed Sep 10, 2015.

  • 13. US FDA. CPG Sec 615.115 extra-label use of medicated feeds for minor species. Available at: www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/ucm074659.htm. Accessed Jun 17, 2015.

    • Search Google Scholar
    • Export Citation
  • 14. US FDA. Guidance for industry #209, the judicious use of medically important antimicrobial drugs in food-producing animals. Available at: www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforInduGuid/UCM216936.pdf. Accessed Jun 17, 2015.

    • Search Google Scholar
    • Export Citation
  • 15. US FDA. Guidance for industry #213, new animal drugs and new animal drug combination products administered in or on medicated feed or drinking water of food-producing animals: recommendations for drug sponsors for voluntarily aligning product use conditions with GFI #209. Available at: www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidancefGuidancefo/UCM299624.pdf. Accessed Jun 17, 2015.

    • Search Google Scholar
    • Export Citation
  • 16. Australian Pesticides and Veterinary Medicines Authority. Available at: portal.apvma.gov.au/pubcris. Accessed Sep 10, 2015.

  • 17. Canadian Compendium of Veterinary Products. Available at: bam.naccvp.com/?u=country&p=msds. Accessed Sep 10, 2015.

  • 18. Ireland Health Products Regulatory Authority. Available at: www.hpra.ie. Accessed Sep 10, 2015.

  • 19. Veterinary Medicines Directorate. Available at: www.vmd.defra.gov.uk/ProductInformationDatabase/. Accessed Sep 10, 2015.

  • 20. Goetting V, Lee KA, Tell LA. Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: a review of the literature. J Vet Pharmacol Ther 2011; 34: 521556.

    • Search Google Scholar
    • Export Citation
  • 21. FARAD. Available at: www.farad.org. Accessed Sep 15, 2015.

  • 22. US FDA. Draft guidance for industry #230: compounding animal drugs from bulk drug substances. Available at: www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM446862.pdf. Accessed Jun 1, 2015.

    • Search Google Scholar
    • Export Citation
  • 23. Behravesh CB, Brinson D, Hopkins BA, et al. Backyard poultry flocks and salmonellosis: a recurring, yet preventable public health challenge. Clin Infect Dis 2014; 58: 14321438.

    • Search Google Scholar
    • Export Citation
  • 24. US FDA. Title 21, Chapter I, Part 530, Subpart C, Section 530.21. Prohibitions for food-producing animals. Code of Federal Regulations 2015; 6. Available at: www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=530.21. Accessed Sep 10, 2015.

    • Search Google Scholar
    • Export Citation
  • 25. US FDA. New animal drugs; cephalosporin drugs; extralabel animal drug use; order of prohibition. Fed Regist 2012; 77: 735745.

  • 26. US FDA. Extralabel animal drug use; fluoroquinolones and glycopeptides; order of prohibition. Fed Regist 1997; 62: 2794427947.

  • 27. US FDA. Animal drugs, feeds, and related products; sarafloxacin for poultry; withdrawal of approval of NADAs. Fed Regist 2001; 66: 21282.

    • Search Google Scholar
    • Export Citation
  • 28. US FDA. Animal drugs, feeds, and related products; enrofloxacin for poultry; withdrawal of approval of new animal drug application. Fed Regist 2005; 70: 4404844049.

    • Search Google Scholar
    • Export Citation
  • 29. Gupta A, Nelson JM, Barrett TJ, et al. Antimicrobial resistance among Campylobacter strains, United States, 1997–2001. Emerg Infect Dis 2004; 10: 11021109.

    • Search Google Scholar
    • Export Citation
  • 30. Doyle MP, Loneragan GH, Scott HM, et al. Antimicrobial resistance: challenges and perspectives. Compr Rev Food Sci F 2013; 12: 234248.

    • Search Google Scholar
    • Export Citation
  • 31. US FDA. 2011 NARMS retail meat annual report. Available at: www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM442212.pdf. Accessed Apr 1, 2015.

    • Search Google Scholar
    • Export Citation
  • 32. Keukens HJ, Kan CA, van Rhijn JA, et al. Ivermectin residues in eggs of laying hens and in muscle and liver of broilers after administration of feeds containing low levels of ivermectin, in Proceedings. EuroResidue IV Conf 2000;678682.

    • Search Google Scholar
    • Export Citation
  • 33. van Dijk, J, Keukens HJ, Kan CA. Transfer of low doses of ivermectin feed to egg. Overdracht van lage doseringen ivermectine van voer naar ei 1990; 97: 120.

    • Search Google Scholar
    • Export Citation
  • 34. Oikawa H, Nakamoto K, Hirota K, et al. Clearance of sulfamethoxazole in eggs and tissues of chickens. Poult Sci 1977; 56: 813821.

    • Search Google Scholar
    • Export Citation
  • 35. Queralt J, Castells I. Pharmacokinetics of sulfamethoxazole and trimethoprim association in hens. Poult Sci 1985; 64: 23622367.

  • 36. Romvary A, Kovacsics-Acs L, Benesch L. Residue studies in eggs, in Proceedings. 4th Cong Euro Assoc Vet Pharmacol Toxicol 1988; 231.

    • Search Google Scholar
    • Export Citation
  • 37. Romvary A, Simon F. Sulfonamide residues in eggs. Acta Vet Hung 1992; 40: 99106.

  • 38. Furusawa N, Kishida K. Transfer and distribution profiles of dietary sulphonamides in the tissues of the laying hen. Food Addit Contam 2002; 19: 368372.

    • Search Google Scholar
    • Export Citation
  • 39. Khattab WO, Elderea HB, Salem EG, et al. Transmission of administered amoxicillin drug residues from laying chicken to their commercial eggs. J Egypt Public Health Assoc 2010; 85: 297316.

    • Search Google Scholar
    • Export Citation
  • 40. Xie K, Zhao M, Guo H, et al. Determination and depletion of amoxicillin residues in eggs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30: 670677.

    • Search Google Scholar
    • Export Citation
  • 41. Furusawa N, Mukai T. Transfer of dietary sulphamonomethoxine and sulphadimethoxine into various tissues of laying hens. Br Poult Sci 1995; 36: 313316.

    • Search Google Scholar
    • Export Citation
  • 42. Furusawa N, Mukai T, Yoshida M. Easiness of transfer of dietary sulfadimethoxine into eggs and its disappearance pattern from eggs. Jpn Poult Sci 1994; 31: 168180.

    • Search Google Scholar
    • Export Citation
  • 43. Nagata T, Saeki M, Ida T, et al. Sulfadimethoxine and sulfamonomethoxine residue studies in chicken tissues and eggs. In: Agarawal VK, ed. Analysis of antibiotic/drug residues in food products of animal origin. New York: Plenum Press, 1992; 173185.

    • Search Google Scholar
    • Export Citation
  • 44. Nagata T, Saeki M, Iida T, et al. Transfer of dietary sulfadimethoxine and sulfamonomethoxine into eggs and their disappearance from eggs. J Food Hygienic Soc Jpn 1989; 30: 375383.

    • Search Google Scholar
    • Export Citation
  • 45. Onodera T, Inoue SI, Kasahara A. Experimental studies on sulfadimethoxine in fowls. III. Egg and other tissue levels of sulfonamides. Jpn J Vet Sci 1970; 32: 275283.

    • Search Google Scholar
    • Export Citation
  • 46. Yamamoto H, Yamaoka R, Kohanawa M. Sulfonamide residue in fowls given sulfadimethoxine sodium in drinking water. Annu Rep Natl Vet Assay Lab 1979; 16: 4751.

    • Search Google Scholar
    • Export Citation
  • 47. Roudaut B, Garnier M. Sulphonamide residues in eggs following drug administration via the drinking water. Food Addit Contam 2002; 19: 373378.

    • Search Google Scholar
    • Export Citation
  • 48. Omija B, Mitema ES, Maitho TE. Oxytetracycline residue levels in chicken eggs after oral administration of medicated drinking water to laying chickens. Food Addit Contam 1994; 11: 641647.

    • Search Google Scholar
    • Export Citation
  • 49. Roudaut B, Moretain JP, Boisseau J. Excretion of oxytetracycline in eggs after medication of laying hens. Food Addit Contam 1987; 4: 297307.

    • Search Google Scholar
    • Export Citation
  • 50. Yoshimura H, Osawa N, Rasa FSC, et al. Residues of doxycycline and oxytetracycline in eggs after medication via drinking water to laying hens. Food Addit Contam 1991; 8: 6569.

    • Search Google Scholar
    • Export Citation
  • 51. Donoghue DJ, Hairston M. Oxytetracycline transfer into chicken egg yolk or albumen. Poult Sci 1999; 78: 343345.

  • 52. Katz SE, Fassbender CA, Dowling JJ Jr. Oxytetracycline residues in tissue, organs, and eggs of poultry fed supplemented rations. J Assoc Off Anal Chem 1973; 56: 7781.

    • Search Google Scholar
    • Export Citation
  • 53. De Ruyck H, De Ridder H, Van Renterghem R, et al. Validation of HPLC method of analysis of tetracycline residues in eggs and broiler meat and its application to a feeding trial. Food Addit Contam 1999; 16: 4756.

    • Search Google Scholar
    • Export Citation
  • 54. Frieser J, Gedek W, Dorn P. Zum Nachweis und zur Bedeutung von Tetracyclin-Rückständen im Ei. Dtsch Tierarztl Wochenschr 1986; 93: 1720.

    • Search Google Scholar
    • Export Citation
  • 55. Nogawa H, Nagura S, Tsuchiya M, et al. Residues of tetracycline antibiotics in eggs laid by hens given drinking water medicated. Annu Rep Natl Vet Assay Lab 1981; 18: 2530.

    • Search Google Scholar
    • Export Citation
  • 56. Nagy J, Sokol J, Turek P, et al. Residues of oxytetracycline in egg white and yolk after medication of laying hens. Bull Vet Inst Pulawy 1997; 41: 141147.

    • Search Google Scholar
    • Export Citation
  • 57. Yoshida M, Kubota D, Yonezawa S, et al. Transfer of dietary oxytetracycline into eggs and its disappearance from eggs. Jpn Poult Sci 1973; 10: 254260.

    • Search Google Scholar
    • Export Citation
  • 58. Muñoz R, Cornejo J, Maddaleno A, et al. Withdrawal times of oxytetracycline and tylosin in eggs of laying hens after oral administration. J Food Prot 2014; 77: 10171021.

    • Search Google Scholar
    • Export Citation
  • 59. Das H, Bawa AS. Distribution of oxytetracycline residues in eggs from orally administered hens. Int J Food Saf Nutr Public Health 2008; 1: 167180.

    • Search Google Scholar
    • Export Citation
  • 60. Zurhelle G, Petz M, Mueller-Seitz E, et al. Metabolites of oxytetracycline, tetracycline, and chlortetracycline and their distribution in egg white, egg yolk, and hen plasma. J Agric Food Chem 2000; 48: 63926396.

    • Search Google Scholar
    • Export Citation
  • 61. Archimbault P, Ambroggi G, Joineaud J. Doxycycline in poultry—bioavailability and transmission in eggs. Rev Med Vet (Toulouse) 1983; 134: 291295.

    • Search Google Scholar
    • Export Citation
  • 62. Keukens HJ, Kan CA, van Rhijn JA, et al. Doxycycline residues in eggs of laying hens and in muscle and liver of broilers after administration of feeds containing low levels of doxycycline, in Proceedings. EuroResidue IV Conf 2000;683688.

    • Search Google Scholar
    • Export Citation
  • 63. Vandenberge V, Delezie E, Huyghebaert G, et al. Residues of sulfadiazine and doxycycline in egg matrices due to cross-contamination in the feed of laying hens and the possible correlation with physicochemical, pharmacokinetic and physiological parameters. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29: 908917.

    • Search Google Scholar
    • Export Citation
  • 64. Leuenberger U, Gauch R, Müller U. Determination of piperazine in hen eggs with HPLC following oral administration. Z Lebensm Unters Forsch 1986; 183: 9092.

    • Search Google Scholar
    • Export Citation
  • 65. Roudaut B, Moretain JP. Residues of macrolide antibiotics in eggs following medication of laying hens. Br Poult Sci 1990; 31: 661675.

    • Search Google Scholar
    • Export Citation
  • 66. Yoshida M, Daisaku K, Yonezawa S, et al. Transfer of dietary tylosin into eggs and its residue in the liver of laying hen. Jpn Poult Sci 1972; 10: 2936.

    • Search Google Scholar
    • Export Citation
  • 67. Furusawa N. Transference of dietary veterinary drugs into eggs. Vet Res Commun 2001; 25: 651662.

  • 68. Hamscher G, Limsuwan S, Tansakul N, et al. Quantitative analysis of tylosin in eggs by high performance liquid chromatography with electrospray ionization tandem mass spectrometry: residue depletion kinetics after administration via feed and drinking water in laying hens. J Agric Food Chem 2006; 54: 90179023.

    • Search Google Scholar
    • Export Citation
  • 69. Iritani Y, Hidaka S, Kitabatake T, et al. Tylosin levels in egg of laying hen given medicated drinking water. Jpn Poult Sci 1976; 13: 248249.

    • Search Google Scholar
    • Export Citation
  • 70. Vandenberge V, Delezie E, Delahaut P, et al. Transfer of flubendazole and tylosin at cross contamination levels in the feed to egg matrices and distribution between egg yolk and egg white. Poult Sci 2012; 91: 12481255.

    • Search Google Scholar
    • Export Citation

Advertisement

Egg residue considerations during the treatment of backyard poultry

Tara Marmulak PharmD1, Lisa A. Tell DVM2, Ronette Gehring BVSc, MMedVet3, Ronald E. Baynes DVM, PhD4, Thomas W. Vickroy PhD5, and Jim E. Riviere DVM, PhD6
View More View Less
  • 1 Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616
  • | 2 Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616
  • | 3 FARAD, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
  • | 4 FARAD, Center for Chemical Toxicology Research and Pharmacokinetics, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
  • | 5 FARAD, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610
  • | 6 FARAD, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506

In recent years, backyard poultry flocks have become increasingly popular in urban areas throughout the United States. Results of a 2010 USDA study1 of 4 US cities (Denver, Los Angeles, Miami, and New York) indicated that 1% of households surveyed owned chickens and another 4% of households surveyed were planning on owning chickens within the next 5 years. The increase in the number of small poultry flocks in urban areas has led to an increase in the demand for veterinary services for those flocks, and veterinarians whose clientele is usually limited to companion animals now find themselves treating

Contributor Notes

The generation of this digest was funded by a USDA grant for the Food Animal Residue Avoidance and Depletion Program.

Address correspondence to Dr. Tell (latell@vetmed.ucdavis.edu).