Total dietary fiber composition of diets used for management of obesity and diabetes mellitus in cats

Tammy J. Owens Veterinary Medical Teaching Hospital, University of California-Davis, Davis, CA 95616.

Search for other papers by Tammy J. Owens in
Current site
Google Scholar
PubMed
Close
 DVM
,
Jennifer A. Larsen Departments of Molecular Biosciences, University of California-Davis, Davis, CA 95616.

Search for other papers by Jennifer A. Larsen in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Amy K. Farcas School of Veterinary Medicine, and the Department of Animal Science, College of Agriculture and Environmental Sciences, University of California-Davis, Davis, CA 95616.

Search for other papers by Amy K. Farcas in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Richard W. Nelson Medicine and Epidemiology, University of California-Davis, Davis, CA 95616.

Search for other papers by Richard W. Nelson in
Current site
Google Scholar
PubMed
Close
 DVM
,
Philip H. Kass Population Health and Reproduction, University of California-Davis, Davis, CA 95616.

Search for other papers by Philip H. Kass in
Current site
Google Scholar
PubMed
Close
 DVM, MPVM, PhD
, and
Andrea J. Fascetti Departments of Molecular Biosciences, University of California-Davis, Davis, CA 95616.

Search for other papers by Andrea J. Fascetti in
Current site
Google Scholar
PubMed
Close
 VMD, PhD

Abstract

Objective—To determine total dietary fiber (TDF) composition of feline diets used for management of obesity and diabetes mellitus.

Design—Cross-sectional survey.

Sample—Dry veterinary (n = 10), canned veterinary (12), and canned over-the-counter (3) feline diets.

Procedures—Percentage of TDF as insoluble dietary fiber (IDF), high-molecular-weight soluble dietary fiber (HMWSDF), and low-molecular-weight soluble dietary fiber (LMWSDF) was determined.

Results—Median measured TDF concentration was greater than reported maximum crude fiber content in dry and canned diets. Median TDF (dry-matter) concentration in dry and canned diets was 12.2% (range, 8.11% to 27.16%) and 13.8% (range, 4.7% to 27.9%), respectively. Dry and canned diets, and diets with and without a source of oligosaccharides in the ingredient list, were not different in energy density or concentrations of TDF, IDF, HMWSDF, or LMWSDF. Similarly, loaf-type (n = 11) and gravy-type (4) canned diets differed only in LMWSDF concentration. Disparities in TDF concentrations among products existed despite a lack of differences among groups. Limited differences in TDF concentration and dietary fiber composition were detected when diets were compared on the basis of carbohydrate concentration. Diets labeled for management of obesity were higher in TDF concentration and lower in energy density than diets for management of diabetes mellitus.

Conclusions and Clinical Relevance—Diets provided a range of TDF concentrations with variable concentrations of IDF, HMWSDF, and LMWSDF. Crude fiber concentration was not a reliable indicator of TDF concentration or dietary fiber composition. Because carbohydrate content is calculated as a difference, results suggested that use of crude fiber content would cause overestimation of both carbohydrate and energy content of diets.

Abstract

Objective—To determine total dietary fiber (TDF) composition of feline diets used for management of obesity and diabetes mellitus.

Design—Cross-sectional survey.

Sample—Dry veterinary (n = 10), canned veterinary (12), and canned over-the-counter (3) feline diets.

Procedures—Percentage of TDF as insoluble dietary fiber (IDF), high-molecular-weight soluble dietary fiber (HMWSDF), and low-molecular-weight soluble dietary fiber (LMWSDF) was determined.

Results—Median measured TDF concentration was greater than reported maximum crude fiber content in dry and canned diets. Median TDF (dry-matter) concentration in dry and canned diets was 12.2% (range, 8.11% to 27.16%) and 13.8% (range, 4.7% to 27.9%), respectively. Dry and canned diets, and diets with and without a source of oligosaccharides in the ingredient list, were not different in energy density or concentrations of TDF, IDF, HMWSDF, or LMWSDF. Similarly, loaf-type (n = 11) and gravy-type (4) canned diets differed only in LMWSDF concentration. Disparities in TDF concentrations among products existed despite a lack of differences among groups. Limited differences in TDF concentration and dietary fiber composition were detected when diets were compared on the basis of carbohydrate concentration. Diets labeled for management of obesity were higher in TDF concentration and lower in energy density than diets for management of diabetes mellitus.

Conclusions and Clinical Relevance—Diets provided a range of TDF concentrations with variable concentrations of IDF, HMWSDF, and LMWSDF. Crude fiber concentration was not a reliable indicator of TDF concentration or dietary fiber composition. Because carbohydrate content is calculated as a difference, results suggested that use of crude fiber content would cause overestimation of both carbohydrate and energy content of diets.

All Time Past Year Past 30 Days
Abstract Views 251 0 0
Full Text Views 1709 1279 56
PDF Downloads 597 288 24
Advertisement