• 1. Voros K, Goetze L, Lattman J, et al. Serum electrolytes and parameters of acid-base content of blood and urine in cows with abomasal displacement (with consideration of the reflux syndrome) [in German]. Zentralbl Veterinarmed A 1985; 32: 110118.

    • Search Google Scholar
    • Export Citation
  • 2. Constable PD, St. Jean G, Hull BL, et al. Preoperative prognostic indicators in cattle with abomasal volvulus. J Am Vet Med Assoc 1991; 198: 20772085.

    • Search Google Scholar
    • Export Citation
  • 3. Rohn M, Tenhagen BA, Hofmann W. Survival of dairy cows after surgery to correct abomasal displacement: 1. Clinical and laboratory parameters and overall survival. J Vet Med A Physiol Pathol Clin Med 2004; 51: 294299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Zadnik T. A comparative study of the hemato-biochemical parameters between clinically healthy cows and cows with displacement of the abomasum. Acad Vet (Beograd) 2003; 53: 297309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Wittek T, Constable PD, Morin DE. Abomasal impaction in Holstein-Friesian cows: 80 cases (1980–2003). J Am Vet Med Assoc 2005; 227: 287291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Ohtsuka H, Mori K, Hatsugaya A, et al. Metabolic alkalosis in coliform mastitis. J Vet Med Sci 1997; 59: 471472.

  • 7. Smith GW, Constable PD, Morin DE. Ability of hematologic and serum biochemical variables to differentiate gram-negative and gram-positive mastitis in dairy cows. J Vet Intern Med 2001; 15: 394400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Hashem MA, Amer HA. Hormonal and biochemical anomalies in dairy cows affected by retained fetal membrances. Vet On-Line Int J Vet Med [serial online] 2008. Available at: priory.com/vet/cow_fetal_membrane.htm. Accessed Oct 23, 2012.

    • Search Google Scholar
    • Export Citation
  • 9. Kalaitzakis E, Panousis N, Roubies N, et al. Macromineral status of dairy cows with concurrent left abomasal displacement and fatty liver. N Z Vet J 2010; 58: 307311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Shaw JC. Ketosis in dairy cattle. A review. J Dairy Sci 1956; 39: 402434.

  • 11. Johnson BL. Observations on the creeping downer cow. Vet Med 1963; 217220.

  • 12. Fenwick DC. The downer cow syndrome. Aust Vet J 1969; 45: 184188.

  • 13. Sielman ES, Sweeney RW, Whitlock RH, et al. Hypokalemia syndrome in dairy cows: 10 cases (1992–1996). J Am Vet Med Assoc 1997; 210: 240243.

    • Search Google Scholar
    • Export Citation
  • 14. Sattler N, Fecteau G, Girard C, et al. Description of 14 cases of bovine hypokalemia syndrome. Vet Rec 1998; 143: 503507.

  • 15. Peek SF, Divers TJ, Guard C, et al. Hypokalemia, muscle weakness, and recumbency in dairy cattle. Vet Ther 2000; 1: 235244.

  • 16. Rowlands GJ, Manston R, Pocock RM, et al. Relationships between stage of lactation and pregnancy and blood composition in a herd of dairy cows and the influences of seasosnal changes in management on these relationships. J Dairy Res 1975; 42: 349362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Neff AW, Connor ND, Bryan HS. Studies on 9α-fluroprednisolone acetate, a new synthetic corticosteroid for the treatment of bovine ketosis. J Dairy Sci 1960; 43: 553562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Ibrahim M, Guay P, Lamothe P. Les electrolytes du sang et des secretions endometriales de la vache a la suite d'une glucocorticotherapie. Can J Comp Med 1972; 36: 160166.

    • Search Google Scholar
    • Export Citation
  • 19. Coffer NJ, Frank N, Elliott SB, et al. Effects of dexamethasone and isoflupredone acetate on plasma potassium concentrations and other biochemical measurements in dairy cows in early lactation. Am J Vet Res 2006; 67: 12441251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Roussel AJ, Cohen ND, Holland PS, et al. Alterations in acid-base balance and serum electrolyte concentrations in cattle: 632 cases (1984–1994). J Am Vet Med Assoc 1998; 212: 17691775.

    • Search Google Scholar
    • Export Citation
  • 21. Constable PD, Miller GY, Hoffsis GF, et al. Risk factors for abomasal volvulus and left abomasal displacement in cattle. Am J Vet Res 1992; 53: 11841192.

    • Search Google Scholar
    • Export Citation
  • 22. Geishauser T, Seeh C. Duodeno-abomasal reflux in cows with abomasal displacement. Zentralbl Veterinarmed A 1996; 43: 445450.

  • 23. Rohn M, Tenhagen BA, Hofmann W. Survival of dairy cows after surgery to correct abomasal displacement: 2. Association of clinical and laboratory parameters with survival in cows with left abomasal displacement. J Vet Med A Physiol Pathol Clin Med 2004; 51: 300305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Goff JP. Macromineral disorders of the transition cow. Vet Clin North Am Food Anim Pract 2004; 20: 471494.

  • 25. Constable PD, Grünberg W, Carstensen L. Comparative effects of two oral rehydration solutions on milk clotting, abomasal luminal pH, and abomasal emptying rate in suckling calves. J Dairy Sci 2009; 92: 296312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Patrick J. Assessment of body potassium stores. Kidney Int 1977; 11: 476490.

  • 27. Sim DW, Wellington GH. Potassium concentration in bovine muscle as influenced by carcass location, breed, sex, energy intake, age, and shrunk body weight. J Anim Sci 1976; 42: 8491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Svendsen P. Evidence of a potassium shift from the extracellular to the intracellular fluid space during metabolic alkalosis in cattle. Nord Vet Med 1969; 21: 660663.

    • Search Google Scholar
    • Export Citation
  • 29. Cakala S, Bieniek K, Albrycht A, et al. Studies on experimental alkalosis in cattle, in Proceedings. 11th Int Cong Dis Cattle Israel Assoc Buiatrics 1980; 12331249.

    • Search Google Scholar
    • Export Citation
  • 30. Grünberg W, Morin DE, Drackley JK, et al. Effect of rapid intravenous administration of 50% dextrose solution on phosphorus homeostasis in postparturient dairy cows. J Vet Intern Med 2006; 20: 14711478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Grünberg W, Morin DE, Drackley JK, et al. Effect of continuous intravenous administration of a 50% dextrose solution on phosphorus homeostasis in dairy cows. J Am Vet Med Assoc 2006; 229: 413420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Simmons DH, Avedon M. Acid-base alterations and plasma potassium concentration. Am J Physiol 1959; 197: 319326.

  • 33. Burnell JM, Villamil MF, Uyeno BT, et al. The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest 1956; 35: 935939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Welt LG, Cap MP, Gehan EA, et al. The prediction of muscle potassium from blood electrolytes in potassium depleted rats. Trans Assoc Am Physicians 1958; 71: 250259.

    • Search Google Scholar
    • Export Citation
  • 35. Constable PD, Staempfli HR, Navetat H, et al. Use of a quantitative strong ion approach to determine the mechanism for acid-base abnormalities in sick calves with or without diarrhea. J Vet Intern Med 2005; 19: 581589.

    • Search Google Scholar
    • Export Citation
  • 36. Constable PD, St. Jean G, Hull BL, et al. Prognostic value of surgical and postoperative findings in cattle with abomasal volvulus. J Am Vet Med Assoc 1991; 199: 892898.

    • Search Google Scholar
    • Export Citation
  • 37. Constable PD, Streeter RK, Koenig GR, et al. Blood L-lactate and pyruvate concentrations and lactate-pyruvate ratio in 41 cattle with abomasal volvulus, in Proceedings. 20th World Assoc Buiatrics Conf 1998; 121123.

    • Search Google Scholar
    • Export Citation
  • 38. Radostits OM, Gay CC, Hinchcliff KW, et al. Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats, and horses. 10th ed. London: WB Saunders Co, 2007.

    • Search Google Scholar
    • Export Citation
  • 39. Grünberg W, Hartmann H, Burfeind O, et al. Plasma potassium-lowering effect of oral glucose, sodium bicarbonate, and the combination thereof in healthy neonatal dairy calves. J Dairy Sci 2011; 94: 56465655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Burnell JM, Scribner BH. Serum potassium concentration as a guide to potassium need. J Am Med Assoc 1957; 164: 959962.

  • 41. Fettman MJ, Chase LE, Bentinck-Smith, et al. Nutritional chloride deficiency in early lactation Holstein cows. J Dairy Sci 1984; 67: 23212335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Coleman RL, Young CC, Sidoni L. More on direct potentiometry—the ion-selective electrode vs flame photometry. Clin Chem 1980; 26: 19221923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Ward GM. Potassium metabolism of domestic ruminants—a review. J Dairy Sci 1966; 49: 268276.

  • 44. Scott D. The effects of potassium supplements upon the absorption of potassium and sodium from sheep rumen. Q J Exp Physiol Cogn Med Sci 1967; 52: 382391.

    • Search Google Scholar
    • Export Citation
  • 45. Warner ACI, Stacy BD. Water, sodium, and potassium movements across the rumen wall of sheep. Q J Exp Physiol Cogn Med Sci 1972; 57: 103119.

    • Search Google Scholar
    • Export Citation
  • 46. Clabough DL, Swanson CR. Heart rate spectral analysis of fasting-induced bradycardia of cattle. Am J Physiol Regul Integ Comp Physiol 1989; 257:R1303R1306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Smith SB, Prior RL. Matabolic responses to fasting and alloxan-induced diabetes mellitus in steers. Am J Vet Res 1984; 45: 18291834.

    • Search Google Scholar
    • Export Citation
  • 48. Galyean ML, Lee RW, Hubbert ME. Influence of fasting and transit on ruminal and blood metabolites in beef steers. J Anim Sci 1981; 53: 718.

  • 49. Parker AJ, Hamlin GP, Coleman CJ, et al. Quantitative analysis of acid-base balance in Bos indicus steers subjected to transportation. J Anim Sci 2003; 81: 14341439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50. Holtenius K, Dahlborn K. Water and sodium movements across the ruminal epithelium in fed and food-deprived sheep. Exp Physiol 1990; 75: 5767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Larsen T, Møller G, Bellio R. Evaluation of clinical and clinical chemical parameters in periparturient cows. J Dairy Sci 2001; 84: 17491758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52. Buscher C, Klee W. Investigations on the pre- and postoperative course of pH and net acid-base excretion in the urine of dairy cows with abomasal displacement. Dtsch Tierarztl Wochenschr 1993; 100: 171176.

    • Search Google Scholar
    • Export Citation
  • 53. Paquay R, Lomba F, Lousse A, et al. Statistical research on the fate of dietary mineral elements in dry and lactating cows. J Agric Sci Camb 1969; 73: 445452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Khorasani GR, Janzen RA, McGill WB, et al. Site and extent of mineral absorption in lactating cows fed whole-crop cereal grain silage or alfalfa silage. J Anim Sci 1997; 75: 239248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55. Martens H, Blume I. Studies on the absorption of sodium and chloride from the rumen of sheep. Comp Biochem Physiol A Comp Physiol 1987; 86: 653656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56. Geishauser T, Reiche D, Seeh C, et al. pH, sodium, potassium, magnesium, calcium, phosphate and chloride in the rumen and abomasal contents of cows with abomasal displacement. Dtsch Tierarztl Wochenschr 1996; 103: 1620.

    • Search Google Scholar
    • Export Citation
  • 57. Hundal HS, Marette A, Mitsumoto Y, et al. Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K(+)–ATPase from the intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem 1992; 267: 50405043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58. Grünberg W, Staufenbiel R, Constable PD, et al. Liver phosphorus content in Holstein-Friesian cows during the transition period. J Dairy Sci 2009; 92: 21062117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59. Breukink HJ, Kuiper R. Digestive disorders following obstruction of flow of ingesta through the abomasum and small intestine. Bovine Pract 1980; 15: 139143.

    • Search Google Scholar
    • Export Citation
  • 60. Kowalczyk DF, Mayer GP. Cation concentration in skeletal muscle of paretic and nonparetic cows. Am J Vet Res 1972; 33: 751757.

  • 61. Belyea RL, Coppock CE, Lake GB. Effects of silage diet on health, reproduction, and blood metabolites of dairy cattle. J Dairy Sci 1975; 58: 13361346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62. McAdam PA, O'Dell GD. Mineral profile of blood plasma of lactating dairy cows. J Dairy Sci 1982; 65: 12191226.

  • 63. Hörügel U, Fürll M. Investigations on early diagnosis of disposition to parturient paresis. Prakt Tierarzt Coll Vet 1998; 28: 8692.

    • Search Google Scholar
    • Export Citation
  • 64. Mulei CM, Daniel RCW. The effects of age on the erythrocyte sodium and potassium concentrations of dairy cows during late pregnancy and early lactation. Vet Res Commun 1990; 14: 6370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65. Mulei CM, Daniel RCW, Green D. Changes in the erythrocyte Mg, Na and K concentrations in late pregnancy and early lactation and their relationship with subsequent fertility and milk production in dairy cows. Zentralbl Veterinarmed A 1988; 35: 522528.

    • Search Google Scholar
    • Export Citation
  • 66. Rasmusen BA, Tucker EM, Ellory JC, et al. The relationship between the S system of blood groups and potassium levels in red blood cells of cattle. Anim Blood Groups Biochem Genet 1974; 5: 95104.

    • Search Google Scholar
    • Export Citation
  • 67. Fürll M, Bialek N, Jäkel L, et al. Displacement of the abomasum in adult cattle in east Germany: incidence, etiology, and prevention. Prakt Tierarzt Coll Vet 1997; 27: 8186.

    • Search Google Scholar
    • Export Citation
  • 68. Türck G, Leonhard-Marek S. Potassium and insulin affect the contractility of abomasal smooth muscle. J Dairy Sci 2010; 93: 35613568.

  • 69. Jünger C, Fürll M. Acute and chronic disturbances of potassium metabolism in cattle. In: Fürll M, ed. Stoffwechselbelastung, -diagnostik und -stabilisierung beim Rind. Hannover, Germany: Leipziger Samstagsakademie, Akademie für tierärztliche Fortbildung, 1998.

    • Search Google Scholar
    • Export Citation
  • 70. Quintela LA, Garcia ME, Pena AI, et al. Association between some biochemical serum parameters and the uterine involution in dairy cattle. Arch Zootec 2003; 52: 419429.

    • Search Google Scholar
    • Export Citation
  • 71. Sattler N, Fecteau G, Helie P, et al. Etiology, forms, and prognosis of gastrointestinal dysfunction resembling vagal indigestion occurring after surgical correction of right abomasal displacement. Can Vet J 2000; 41: 777785.

    • Search Google Scholar
    • Export Citation
  • 72. Tumbleson ME, Wingfield WE, Johnson HD, et al. Serum electrolyte concentrations as a function of age in female dairy cattle. Cornell Vet 1973; 63: 5864.

    • Search Google Scholar
    • Export Citation
  • 73. Delgado-Lecaroz R, Warnick LD, Guard CL, et al. Cross-sectional study of the association of abomasal displacement or volvulus with serum electrolyte and mineral concentrations in dairy cows. Can Vet J 2000; 41: 301305.

    • Search Google Scholar
    • Export Citation
  • 74. Wagner SA, Schimek DE. Evaluation of the effect of bolus administration of 50% dextrose solution on measures of electrolyte and energy balance in postpartum dairy cows. Am J Vet Res 2010; 71: 10741080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75. Stankovic AK, Smith S. Elevated serum potassium values. The role of preanalytic variables. Am J Clin Pathol 2004; 121(suppl 1):S105S112.

    • Search Google Scholar
    • Export Citation
  • 76. Maltz E, Silanikove N, Shalit U, et al. Diurnal fluctuations in plasma ions and water intake of dairy cows as affected by lactation in warm weather. J Dairy Sci 1994; 77: 26302639.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Clinicopathologic variables associated with hypokalemia in lactating dairy cows with abomasal displacement or volvulus

Peter ConstableDepartment of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907.

Search for other papers by Peter Constable in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD, DACVIM, DACVN
,
Walter GrünbergInwendige Ziekten, Faculteit der Diergeneeskunde, Universiteit Utrecht, 3584 CM Utrecht, The Netherlands.

Search for other papers by Walter Grünberg in
Current site
Google Scholar
PubMed
Close
 Dr med vet, PhD
,
Rudolf StaufenbielKlinik für Klauentiere, Fachbereich Veterinärmedizin, Freie Universität Berlin, D-14163 Berlin, Germany.

Search for other papers by Rudolf Staufenbiel in
Current site
Google Scholar
PubMed
Close
 Prof Dr med vet
, and
Henry R. StämpfliDepartment of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1H 2W1, Canada.

Search for other papers by Henry R. Stämpfli in
Current site
Google Scholar
PubMed
Close
 DVM, Dr Med Vet, DACVIM

Abstract

Objective—To identify potential mechanisms for hypokalemia in dairy cows with left-displaced abomasum (LDA), right-displaced abomasum (RDA), or abomasal volvulus (AV).

Design—Retrospective analysis of clinicopathologic data from 2 convenience samples of cows.

Sample—112 lactating dairy cows with AV (group 1); 1,332 lactating dairy cows (group 2) with LDA (n = 1,160) or RDA or AV (172).

Procedures—Data were analyzed via Spearman ρ and multivariate stepwise regression.

Results—78 of 112 (70%) group 1 cows were hypokalemic (mean serum potassium concentration, 3.5 mEq/L; reference range, 3.9 to 5.8 mEq/L). For group 1 cows, serum chloride concentration had the strongest positive association with serum potassium concentration, and serum potassium concentration was negatively associated with plasma bicarbonate and serum glucose, creatinine, and urea concentrations. Six hundred thirty-six of 1,160 (55%) of group 2 cows with LDA were hypokalemic (mean serum potassium concentration, 3.7 mEq/L). Ninety-two of 172 (53%) group 2 cows with RDA or AV were hypokalemic (mean serum potassium concentration, 3.8 mEq/L). For group 2 cows, serum chloride concentration had the strongest positive association with serum potassium concentration, and serum potassium concentration was negatively associated with indices of feed intake (serum bilirubin concentration) and hydration status.

Conclusions and Clinical Relevance—Results suggested hypokalemia was associated with hypochloremia, alkalemia, low feed intake with high amount of milk produced, hypovolemia, and hyperglycemia in lactating dairy cows. Treatment of hypokalemia should include surgical correction of abomasal displacement, increased dietary potassium intake via dietary dry matter intake or oral administration of KCl, and correction of hypochloremia, alkalemia, metabolic alkalosis, and dehydration.

Abstract

Objective—To identify potential mechanisms for hypokalemia in dairy cows with left-displaced abomasum (LDA), right-displaced abomasum (RDA), or abomasal volvulus (AV).

Design—Retrospective analysis of clinicopathologic data from 2 convenience samples of cows.

Sample—112 lactating dairy cows with AV (group 1); 1,332 lactating dairy cows (group 2) with LDA (n = 1,160) or RDA or AV (172).

Procedures—Data were analyzed via Spearman ρ and multivariate stepwise regression.

Results—78 of 112 (70%) group 1 cows were hypokalemic (mean serum potassium concentration, 3.5 mEq/L; reference range, 3.9 to 5.8 mEq/L). For group 1 cows, serum chloride concentration had the strongest positive association with serum potassium concentration, and serum potassium concentration was negatively associated with plasma bicarbonate and serum glucose, creatinine, and urea concentrations. Six hundred thirty-six of 1,160 (55%) of group 2 cows with LDA were hypokalemic (mean serum potassium concentration, 3.7 mEq/L). Ninety-two of 172 (53%) group 2 cows with RDA or AV were hypokalemic (mean serum potassium concentration, 3.8 mEq/L). For group 2 cows, serum chloride concentration had the strongest positive association with serum potassium concentration, and serum potassium concentration was negatively associated with indices of feed intake (serum bilirubin concentration) and hydration status.

Conclusions and Clinical Relevance—Results suggested hypokalemia was associated with hypochloremia, alkalemia, low feed intake with high amount of milk produced, hypovolemia, and hyperglycemia in lactating dairy cows. Treatment of hypokalemia should include surgical correction of abomasal displacement, increased dietary potassium intake via dietary dry matter intake or oral administration of KCl, and correction of hypochloremia, alkalemia, metabolic alkalosis, and dehydration.

Contributor Notes

Work for this study was performed at Purdue University, West Lafayette, IN 47907; The Ohio State University, Columbus, OH 43210; Freie Universität Berlin, D-14163 Berlin, Germany; and University of Guelph, Guelph, ON N1H 2W1, Canada.

Address correspondence to Dr. Constable (constabl@purdue.edu).