Oleander toxicosis in equids: 30 cases (1995–2010)

Anna C. Renier William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Anna C. Renier in
Current site
Google Scholar
PubMed
Close
 DVM, DACVIM
,
Philip H. Kass Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Philip H. Kass in
Current site
Google Scholar
PubMed
Close
 DVM, DACVPM, PhD
,
K. Gary Magdesian Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by K. Gary Magdesian in
Current site
Google Scholar
PubMed
Close
 DVM, DACVIM, DACVECC, DACVCP
,
John E. Madigan Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by John E. Madigan in
Current site
Google Scholar
PubMed
Close
 DVM, DACVIM
,
Monica Aleman Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Monica Aleman in
Current site
Google Scholar
PubMed
Close
 MVZ, PhD, DACVIM
, and
Nicola Pusterla Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Nicola Pusterla in
Current site
Google Scholar
PubMed
Close
 DVM, PhD, DACVIM

Abstract

Objective—To determine clinical, laboratory analysis, and necropsy findings for equids with oleander toxicosis and to identify factors associated with outcome.

Design—Retrospective case series.

Animals—30 equids.

Procedures—Medical records of equids with detectable concentrations of oleandrin in serum, plasma, urine, or gastrointestinal fluid samples and equids that had not received cardiac glycoside drugs but had detectable concentrations of digoxin in serum were identified via a medical records database search. Descriptive statistics were calculated for medical history, physical examination, laboratory analysis, and necropsy variables. Logistic regression analysis was used to identify physical examination and laboratory analysis factors significantly associated with outcome.

Results—3 of 30 (10.0%) equids died before or immediately after arrival at the hospital. Of the other 27 equids, 23 (85.2%) had gastrointestinal tract abnormalities, azotemia was detected for 19 (70.4%), and a cardiac arrhythmia was ausculted for 18 (66.7%). Mortality rate for all equids was 50.0%; mortality rate for hospitalized equids was 44.4%. The most common cause of death was cardiac dysfunction. Odds of survival to discharge from the hospital were lower for equids with cardiac arrhythmias versus those without arrhythmias and decreased with increasing Hct and serum glucose concentrations. Odds of survival increased with increasing serum chloride concentration and duration of hospitalization.

Conclusions and Clinical Relevance—Equids with oleander toxicosis frequently had simultaneous gastrointestinal tract, cardiac, and renal problems. Oleander intoxication should be a differential diagnosis for equids with colic in geographic areas where oleander is found, especially when azotemia or cardiac arrhythmias are detected concurrently.

Abstract

Objective—To determine clinical, laboratory analysis, and necropsy findings for equids with oleander toxicosis and to identify factors associated with outcome.

Design—Retrospective case series.

Animals—30 equids.

Procedures—Medical records of equids with detectable concentrations of oleandrin in serum, plasma, urine, or gastrointestinal fluid samples and equids that had not received cardiac glycoside drugs but had detectable concentrations of digoxin in serum were identified via a medical records database search. Descriptive statistics were calculated for medical history, physical examination, laboratory analysis, and necropsy variables. Logistic regression analysis was used to identify physical examination and laboratory analysis factors significantly associated with outcome.

Results—3 of 30 (10.0%) equids died before or immediately after arrival at the hospital. Of the other 27 equids, 23 (85.2%) had gastrointestinal tract abnormalities, azotemia was detected for 19 (70.4%), and a cardiac arrhythmia was ausculted for 18 (66.7%). Mortality rate for all equids was 50.0%; mortality rate for hospitalized equids was 44.4%. The most common cause of death was cardiac dysfunction. Odds of survival to discharge from the hospital were lower for equids with cardiac arrhythmias versus those without arrhythmias and decreased with increasing Hct and serum glucose concentrations. Odds of survival increased with increasing serum chloride concentration and duration of hospitalization.

Conclusions and Clinical Relevance—Equids with oleander toxicosis frequently had simultaneous gastrointestinal tract, cardiac, and renal problems. Oleander intoxication should be a differential diagnosis for equids with colic in geographic areas where oleander is found, especially when azotemia or cardiac arrhythmias are detected concurrently.

All Time Past Year Past 30 Days
Abstract Views 250 0 0
Full Text Views 2032 1730 149
PDF Downloads 485 199 28
Advertisement