• 1.

    Kouwenhoven WBJude JRKnickerbocker GG. Closed-chest cardiac massage. JAMA 1960; 173: 10641067.

  • 2.

    Brace SPerkins GD. Celebrating 50 years of cardiopulmonary resuscitation. Curr Opin Crit Care 2010; 16: 181183.

  • 3.

    Cummins ROOrnato JPThies WH, et al. Improving survival from sudden cardiac arrest: the “chain of survival” concept. A statement for health professionals from the Advanced Cardiac Life Support Subcommittee and the Emergency Cardiac Care Committee, American Heart Association. Circulation 1991; 83: 18321847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Larsen MPEisenberg MSCummins RO, et al. Predicting survival from out-of-hospital cardiac arrest: a graphic model. Ann Emerg Med 1993; 22: 16521658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Iwami TNichol GHiraide A, et al. Continuous improvements in “chain of survival” increased survival after out-of-hospital cardiac arrests: a large-scale population-based study. Circulation 2009; 119: 728734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Lund-Kordahl IOlasveengen TMLorem T, et al. Improving outcome after out-of-hospital cardiac arrest by strengthening weak links of the local chain of survival; quality of advanced life support and post-resuscitation care. Resuscitation 2010; 81: 422426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bhanji FMancini MESinz E, et al. Part 16: education, implementation, and teams: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (18 suppl 3): S920S933.

    • Search Google Scholar
    • Export Citation
  • 8.

    Donnelly PAssar DLester C. A comparison of manikin CPR performance by lay persons trained in three variations of basic life support guidelines. Resuscitation 2000; 45: 195199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Rea TDStickney REDoherty A, et al. Performance of chest compressions by laypersons during the Public Access Defibrillation Trial. Resuscitation 2010; 81: 293296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Aufderheide TPLurie KG. Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med 2004; 32 (9 suppl): S345S351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Gallagher EJLombardi GGennis P. Effectiveness of bystander cardiopulmonary resuscitation and survival following out-of-hospital cardiac arrest. JAMA 1995; 274: 19221925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Abella BSAlvarado JPMyklebust H, et al. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 2005; 293: 305310.

  • 13.

    Abella BSSandbo NVassilatos P, et al. Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 2005; 111: 428434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wik LKramer-Johansen JMyklebust H, et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 2005; 293: 299304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Seethala RREsposito ECAbella BS. Approaches to improving cardiac arrest resuscitation performance. Curr Opin Crit Care 2010; 16: 196202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bernard SAGray TWBuist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346: 549556.

    • Search Google Scholar
    • Export Citation
  • 18.

    Arrich JHolzer MHerkner H, et al. Cochrane corner: hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Anesth Analg 2010; 110: 1239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Neumar RWNolan JPAdrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. Circulation 2008; 118: 24522483.

    • Search Google Scholar
    • Export Citation
  • 20.

    Neumar RWOtto CWLink MS, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (18 suppl 3): S729S767.

    • Search Google Scholar
    • Export Citation
  • 21.

    Peberdy MAOrnato JP. Post-resuscitation care: is it the missing link in the Chain of Survival? Resuscitation 2005; 64: 135137.

  • 22.

    Fletcher DJBoiler M. Reassessment Campaign on Veterinary Resuscitation (RECOVER). J Vet Emerg Crit Care (San Antonio) 2011; 21: 186.

  • 23.

    Nichol GThomas ECallaway CW, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 2008; 300: 14231431.

  • 24.

    Chugh SSJui JGunson K, et al. Current burden of sudden cardiac death: Multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. J Am Coll Cardiol 2004; 44: 12681275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Roger VLGo ASLloyd-Jones DM, et al. Heart disease and stroke statistics—2011 update. Circulation 2011; 123:e18e209.

  • 26.

    Rea TDEisenberg MSBecker LJ, et al. Temporal trends in sudden cardiac arrest: a 25-year emergency medical services perspective. Circulation 2003; 107: 27802785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Atwood CEisenberg MSHerlitz J, et al. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 2005; 67: 7580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Eisenberg MSHorwood BTCummins RO, et al. Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 1990; 19: 179186.

  • 29.

    Hofmeister EHBrainard BMEgger CM, et al. Prognostic indicators for dogs and cats with cardiopulmonary arrest treated by cardiopulmonary cerebral resuscitation at a university teaching hospital. J Am Vet Med Assoc 2009; 235: 5057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Waldrop JERozanski EASwanke ED, et al. Causes of cardiopulmonary arrest, resuscitation management, and functional outcome in dogs and cats surviving cardiopulmonary arrest. J Vet Emerg Crit Care 2004; 14: 2229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Kass PHHaskins SC. Survival following cardiopulmonary resuscitation in dogs and cats. J Vet Emerg Crit Care 1992; 2: 5765.

  • 32.

    Wingfield WEVan Pelt DR. Respiratory and cardiopulmonary arrest in dogs and cats: 265 cases (1986–1991). J Am Vet Med Assoc 1992; 200: 19931996.

    • Search Google Scholar
    • Export Citation
  • 33.

    Cole SGOtto CMHughes D. Cardiopulmonary cerebral resuscitation in small animals—a clinical practice review. Part I. J Vet Emerg Crit Care 2002; 12: 261267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Cole SGOtto CMHughes D. Cardiopulmonary cerebral resuscitation in small animals—a clinical practice review. Part II. J Vet Emerg Crit Care 2003; 13: 1323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Nadkarni VMLarkin GLPeberdy MA, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA 2006; 295: 5057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Peberdy MAKaye WOrnato JP, et al. Cardiopulmonary resuscitation of adults in the hospital: a report of 14720 cardiac arrests from the National Registry of Cardiopulmonary Resuscitation. Resuscitation 2003; 58: 297308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Taffet GETeasdale TALuchi RJ. In-hospital cardiopulmonary resuscitation. JAMA 1988; 260: 20692072.

  • 38.

    Ballew KAPhilbrick JTCaven DE, et al. Predictors of survival following in-hospital cardiopulmonary resuscitation. A moving target. Arch Intern Med 1994; 154: 24262432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Schultz SCCullinane DCPasquale MD, et al. Predicting in-hospital mortality during cardiopulmonary resuscitation. Resuscitation 1996; 33: 1317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    de Vos RKoster RWDe Haan RJ, et al. In-hospital cardiopulmonary resuscitation: prearrest morbidity and outcome. Arch Intern Med 1999; 159: 845850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    George AL JrFolk BP 3rdCrecelius PL, et al. Pre-arrest morbidity and other correlates of survival after in-hospital cardiopulmonary arrest. Am J Med 1989; 87: 2834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Bedell SEDelbanco TLCook EF, et al. Survival after cardiopulmonary resuscitation in the hospital. N Engl J Med 1983; 309: 569576.

  • 43.

    Smith GB. In-hospital cardiac arrest: is it time for an in-hospital ‘chain of prevention’? Resuscitation 2010; 81: 12091211.

  • 44.

    Boiler M. Celebrating the 50th anniversary of cardiopulmonary resuscitation: from animals to humans … and back? J Vet Emerg Crit Care (San Antonio) 2010; 20: 553557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Weil MHBisera JTrevino RP, et al. Cardiac output and endtidal carbon dioxide. Crit Care Med 1985; 13: 907909.

  • 46.

    Voorhees WDBabbs CFTacker WA Jr. Regional blood flow during cardiopulmonary resuscitation in dogs. Crit Care Med 1980; 8: 134136.

  • 47.

    Otlewski MPGeddes LAPargett M, et al. Methods for calculating coronary perfusion pressure during CPR. Cardiovasc Eng 2009; 9: 98103.

  • 48.

    Kern KBEwy GAVoorhees WD, et al. Myocardial perfusion pressure: a predictor of 24-hour survival during prolonged cardiac arrest in dogs. Resuscitation 1988; 16: 241250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Babbs CFMeyer ANadkarni V. Neonatal CPR: room at the top—a mathematical study of optimal chest compression frequency versus body size. Resuscitation 2009; 80: 12801284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Feneley MPMaier GWGaynor JW, et al. Sequence of mitral valve motion and transmural blood flow during manual cardiopulmonary resuscitation in dogs. Circulation 1987; 76: 363375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Dean JMKoehler RCSchleien CL, et al. Age-related changes in chest geometry during cardiopulmonary resuscitation. J Appl Physiol 1987; 62: 22122219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Dean JMKoehler RCSchleien CL, et al. Age-related effects of compression rate and duration in cardiopulmonary resuscitation. J Appl Physiol 1990; 68: 554560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Meaney PANadkarni VMCook EF, et al. Higher survival rates among younger patients after pediatric intensive care unit cardiac arrests. Pediatrics 2006; 118: 24242433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Maier GWNewton JR JrWolfe JA, et al. The influence of manual chest compression rate on hemodynamic support during cardiac arrest: high-impulse cardiopulmonary resuscitation. Circulation 1986; 74:IV51IV59.

    • Search Google Scholar
    • Export Citation
  • 55.

    Feneley MPMaier GWKern KB, et al. Influence of compression rate on initial success of resuscitation and 24 hour survival after prolonged manual cardiopulmonary resuscitation in dogs. Circulation 1988; 77: 240250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Berg MDSchexnayder SMChameides L, et al. Part 13: pediatric basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (suppl 3):S8627S865.

    • Search Google Scholar
    • Export Citation
  • 57.

    Newton JR JrGlower DDWolfe JA, et al. A physiologic comparison of external cardiac massage techniques. J Thorac Cardiovasc Surg 1988; 95: 892901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Wolfe JAMaier GWNewton JR Jr, et al. Physiologic determinants of coronary blood flow during external cardiac massage. J Thorac Cardiovasc Surg 1988; 95: 523532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Boiler MKellett-Gregory LShofer FS, et al. The clinical practice of CPCR in small animals: an internet-based survey. J Vet Emerg Crit Care (San Antonio) 2010; 20: 558570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Berg RAHemphill RAbella BS, et al. Part 5: adult basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (suppl 3): S685S705.

    • Search Google Scholar
    • Export Citation
  • 61.

    Hoke RSChamberlain D. Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 2004; 63: 327338.

  • 62.

    Halperin HRRayburn BK. Manual cardiopulmonary resuscitation techniques. In: Paradis MRHalperin HRKern K, et al, eds. Cardiac arrest: the science and practice of resuscitation medicine. 2nd ed. Cambridgeshire, Cambridge, England: Cambridge University Press, 2007;571584.

    • Search Google Scholar
    • Export Citation
  • 63.

    Kern KBCarter ABShowen RL, et al. CPR-induced trauma: comparison of three manual methods in an experimental model. Ann Emerg Med 1986; 15: 674679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Niles DNysaether JSutton R, et al. Leaning is common during in-hospital pediatric CPR, and decreased with automated corrective feedback. Resuscitation 2009; 80: 553557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Zuercher MHilwig RWRanger-Moore J, et al. Leaning during chest compressions impairs cardiac output and left ventricular myocardial blood flow in piglet cardiac arrest. Crit Care Med 2010; 38: 11411146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Berg RASanders ABKern KB, et al. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 2001; 104: 24652470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Edelson DPAbella BSKramer-Johansen J, et al. Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation 2006; 71: 137145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Walcott GPMelnick SBWalker RG, et al. Effect of timing and duration of a single chest compression pause on short-term survival following prolonged ventricular fibrillation. Resuscitation 2009; 80: 458462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Travers AHRea TDBobrow BJ, et al. Part 4: CPR overview: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (suppl 3): S676S684.

    • Search Google Scholar
    • Export Citation
  • 70.

    Cheskes SSchmicker RHChristenson J, et al. Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation 2011;124;5866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Ralston SHBabbs CFNiebauer MJ. Cardiopulmonary resuscitation with interposed abdominal compression in dogs. Anesth Analg 1982; 61: 645651.

    • Search Google Scholar
    • Export Citation
  • 72.

    Hoekstra OSVan Lambalgen AAGroeneveld ABJ, et al. Abdominal compressions increase vital organ perfusion during CPR in dogs: relation with efficacy of thoracic compressions. Ann Emerg Med 1995; 25: 375385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Kern KBCarter ABShowen RL. Twenty-four hour survival in a canine model of cardiac arrest comparing three methods of manual cardiopulmonary resuscitation. J Am Coll Cardiol 1986; 7: 859867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Voorhees WD IIIRalston SHBabbs CF. Regional blood flow during cardiopulmonary resuscitation with abdominal counterpulsation in dogs. Am J Emerg Med 1984; 2: 123128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Kern KBHilwig RWBerg RA, et al. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation 2002; 105: 645649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Ewy GAZuercher MHilwig RW, et al. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest. Circulation 2007; 116: 25252530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Chandra NCGruben KGTsitlik JE, et al. Observations of ventilation during resuscitation in a canine model. Circulation 1994; 90: 30703075.

  • 78.

    Sinz EHHigh K. Respiratory physiology in ECC: principles of oxygenation and ventilation. In: Field JMKudenchuk PJO'Connor RE, et al, eds. The textbook of emergency cardiovascular care and CPR. First ed. Philadelphia: Lippincott Williams & Wilkins, 2009;233241.

    • Search Google Scholar
    • Export Citation
  • 79.

    Idris AH. Reassessing the need for ventilation during CPR. Ann Emerg Med 1996; 27: 569575.

  • 80.

    SOS-KANTO study group. Cardiopulmonary resuscitation by bystanders with chest compression only (SOS-KANTO): an observational study. Lancet 2007; 369: 920926.

    • Search Google Scholar
    • Export Citation
  • 81.

    Sayre MRBerg RACave DM, et al. Hands-only (compression-only) cardiopulmonary resuscitation: a call to action for bystander response to adults who experience out-of-hospital sudden cardiac arrest: a science advisory for the public from the American Heart Association Emergency Cardiovascular Care Committee. Circulation 2008; 117: 21622167.

    • Search Google Scholar
    • Export Citation
  • 82.

    Peberdy MACallaway CWNeumar RW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (suppl 3): S768S786.

    • Search Google Scholar
    • Export Citation
  • 83.

    Neumar RW. Optimal oxygenation during and after cardiopulmonary resuscitation. Curr Opin Crit Care 2011; 17: 236240.

  • 84.

    Kilgannon JHJones AEParrillo JE, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation 2011; 123: 27172722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Anderson CTBreen PH. Carbon dioxide kinetics and capnography during critical care. Crit Care 2000; 4: 207215.

  • 86.

    Martin GBGentile NTParadis NA, et al. Effect of epinephrine on end-tidal carbon dioxide monitoring during CPR. Ann Emerg Med 1990; 19: 396398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Lindberg LLiao QSteen S. The effects of epinephrine/norepinephrine on end-tidal carbon dioxide concentration, coronary perfusion pressure and pulmonary arterial blood flow during cardiopulmonary resuscitation. Resuscitation 2000; 43: 129140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Ward KRYealy DM. End-tidal Carbon Dioxide Monitoring in Emergency Medicine, Part 2: Clinical Applications. Acad Emerg Med 1998; 5: 637646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Callaham MBarton C. Prediction of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration. Crit Care Med 1990; 18: 358362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Gudipati CVWeil MHBisera J, et al. Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. Circulation 1988; 77: 234239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Kern KBSanders ABVoorhees WD, et al. Changes in expired end-tidal carbon dioxide during cardiopulmonary resuscitation in dogs: a prognostic guide for resuscitation efforts. J Am Coll Cardiol 1989; 13: 11841189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Pernat AWeil MHSun S, et al. Stroke volumes and end-tidal carbon dioxide generated by precordial compression during ventricular fibrillation. Crit Care Med 2003; 31: 18191823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Sanders ABKern KBOtto CW, et al. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. A prognostic indicator for survival. JAMA 1989; 262: 13471351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Levine RLWayne MAMiller CC. End-tidal carbon dioxide and outcome of out-of-hospital cardiac arrest. N Engl J Med 1997; 337: 301306.

  • 95.

    Berg RAHenry COtto CW, et al. Initial end-tidal CO2 is markedly elevated during cardiopulmonary resuscitation after asphyxial cardiac arrest. Pediatr Emerg Care 1996; 12: 245248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Grmec SLah KTusek-Bunc K. Difference in end-tidal CO2 between asphyxia cardiac arrest and ventricular fibrillation/pulseless ventricular tachycardia cardiac arrest in the prehospital setting. Crit Care 2003; 7:R139R144.

    • Search Google Scholar
    • Export Citation
  • 97.

    Kern KBSanders ABJanas W, et al. Limitations of open-chest cardiac massage after prolonged, untreated cardiac arrest in dogs. Ann Emerg Med 1991; 20: 761767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Benson DMO'Neil BKakish E, et al. Open-chest CPR improves survival and neurologic outcome following cardiac arrest. Resuscitation 2005; 64: 209217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Hayes MMBerg RAOtto CW. Monitoring during cardiac arrest: are we there yet? Curr Opin Crit Care 2003; 9: 211217.

  • 100.

    Callaway CWMenegazzi JJ. Waveform analysis of ventricular fibrillation to predict defibrillation. Curr Opin Crit Care 2005; 11: 192199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Weaver WDCobb LADennis D, et al. Amplitude of ventricular fibrillation waveform and outcome after cardiac arrest. Ann Intern Med 1985; 102: 5355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Eftestol TWik LSunde K, et al. Effects of cardiopulmonary resuscitation on predictors of ventricular fibrillation defibrillation success during out-of-hospital cardiac arrest. Circulation 2004; 110: 1015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Hilty WMHudson PALevitt MA, et al. Real-time ultrasound-guided femoral vein catheterization during cardiopulmonary resuscitation. Ann Emerg Med 1997; 29: 331336, discussion 337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Connick MBerg RA. Femoral venous pulsations during open-chest cardiac massage. Ann Emerg Med 1994; 24: 11761179.

  • 105.

    Rivers EPRady MYMartin GB, et al. Venous hyperoxia after cardiac arrest. Characterization of a defect in systemic oxygen utilization. Chest 1992; 102: 17871793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Nakazawa KHikawa YSaitoh Y, et al. Usefulness of central venous oxygen saturation monitoring during cardiopulmonary resuscitation. A comparative case study with end-tidal carbon dioxide monitoring. Intensive Care Med 1994; 20: 450451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    Beal MWHughes D. Vascular access: theory and techniques in the small animal emergency patient. Clin Tech Small Anim Pract 2000; 15: 101109.

  • 108.

    Yeung JMeeks REdelson D, et al. The use of CPR feedback/prompt devices during training and CPR performance: A systematic review. Resuscitation 2009; 80: 743751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109.

    Abella BSEdelson DPKim S, et al. CPR quality improvement during in-hospital cardiac arrest using a real-time audiovisual feedback system. Resuscitation 2007; 73: 5461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Edelson DPLitzinger BArora V, et al. improving in-hospital cardiac arrest process and outcomes with performance debriefing. Arch Intern Med 2008; 168: 10631069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111.

    Adgey AASpence MSWalsh SJ. Theory and practice of defibrillation: (2) defibrillation for ventricular fibrillation. Heart 2005; 91: 118125.

  • 112.

    Emerman CLPinchak ACHancock D, et al. Effect of injection site on circulation times during cardiac arrest. Crit Care Med 1988; 16: 11381141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    Gaddis GMDolister MGaddis ML. Mock drug delivery to the proximal aorta during cardiopulmonary resuscitation: central vs peripheral intravenous infusion with varying flush volumes. Acad Emerg Med 1995; 2: 10271033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114.

    Levitan RMBortle CDSnyder TA, et al. Use of a battery-operated needle driver for intraosseous access by novice users: skill acquisition with cadavers. Ann Emerg Med 2009; 54: 692694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    Frascone RJJensen JWewerka SS, et al. Use of the pediatric EZ-IO needle by emergency medical services providers. Pediatr Emerg Care 2009; 25: 329332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Buck MLWiggins BSSesler JM. Intraosseous drug administration in children and adults during cardiopulmonary resuscitation. Ann Pharmacother 2007; 41: 16791686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117.

    Naganobu KHasebe YUchiyama Y, et al. A comparison of distilled water and normal saline as diluents for endobronchial administration of epinephrine in the dog. Anesth Analg 2000; 91: 317321.

    • Search Google Scholar
    • Export Citation
  • 118.

    Hahnel JLindner KHAhnefeld FW. Endobronchial administration of emergency drugs. Resuscitation 1989; 17: 261272.

  • 119.

    Niemann JTStratton SJCruz B, et al. Endotracheal drug administration during out-of-hospital resuscitation: where are the survivors? Resuscitation 2002; 53: 153157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Jespersen HEGranborg JHansen U, et al. Feasibility of intracardiac injection of drugs during cardiac arrest. Eur Heart J 1990; 11: 269274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Davison RBarresi VParker M, et al. Intracardiac injections during cardiopulmonary resuscitation. JAMA 1980; 244: 11101111.

  • 122.

    Amey BDHarrison EEStraub EJ, et al. Paramedic use of intracardiac medications in prehospital sudden cardiac death. JACEP 1978; 7: 130134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 123.

    Harrison EE. Intracardiac injections. JAMA 1981; 245: 13151315.

  • 124.

    Sabin HICoghill SBKhunti K, et al. Accuracy of intracardiac injections determined by a postmortem study. Lancet 1983; 2: 10541055.

  • 125.

    Steinberg JJ. Intracardiac injection of inotropic agents. Lancet 1984; 1: 218218.

  • 126.

    Paradis NAWenzel VSouthall J. Pressor drugs in the treatment of cardiac arrest. Cardiol Clin 2002; 20: 6178.

  • 127.

    Morrison LJDeakin CDMorley PT, et al. Part 8: Advanced life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 2010; 122 (suppl 2): S345S421.

    • Search Google Scholar
    • Export Citation
  • 128.

    Olasveengen TMSunde KBrunborg C, et al. Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial. JAMA 2009; 302: 22222229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129.

    Ditchey RLindenfeld J. Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation 1988; 78: 382389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130.

    Tang WWeil MHSun S, et al. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 1995; 92: 30893093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131.

    Kern KB. Postresuscitation myocardial dysfunction. Cardiol Clin 2002; 20: 89101.

  • 132.

    Wenzel VLindner KHKrismer AC, et al. Survival with full neurologic recovery and no cerebral pathology after prolonged cardiopulmonary resuscitation with vasopressin in pigs. J Am Coll Cardiol 2000; 35: 527533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133.

    Lindner KHPrengel AWPfenninger EG, et al. Vasopressin improves vital organ blood flow during closed-chest cardiopulmonary resuscitation in pigs. Circulation 1995; 91: 215221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134.

    Scroggin RD JrQuandt J. The use of vasopressin for treating vasodilatory shock and cardiopulmonary arrest. J Vet Emerg Crit Care (San Antonio) 2009; 19: 145157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 135.

    Wenzel VKrismer ACArntz HR, et al. A comparison of vasopressin and epinephrine for out-of-hospital cardiopulmonary resuscitation. N Engl J Med 2004; 350: 105113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    Blecic SChaskis CVincent JL. Atropine administration in experimental electromechanical dissociation. Am J Emerg Med 1992; 10: 515518.

  • 137.

    DeBehnke DJSwart GLSpreng D, et al. Standard and higher doses of atropine in a canine model of pulseless electrical activity. Acad Emerg Med 1995; 2: 10341041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Gentile NTMartin GBAppleton TJ, et al. Effects of arterial and venous volume infusion on coronary perfusion pressures during canine CPR. Resuscitation 1991; 22: 5563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Abbott A JrHill RShears L, et al. Effects of calcium chloride administration on the postischemic isolated rat heart. Ann Thorac Surg 1991; 51: 705710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140.

    Shepherd G. Treatment of poisoning caused by beta-adrenergic and calcium-channel blockers. Am J Health Syst Pharm 2006; 63: 18281835.

  • 141.

    Morley PT. Monitoring the quality of cardiopulmonary resuscitation. Curr Opin Crit Care 2007; 13: 261267.

  • 142.

    Lisciandro GR. Abdominal and thoracic focused assessment with sonography for trauma, triage, and monitoring in small animals. J Vet Emerg Crit Care (San Antonio) 2011; 21: 104122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 143.

    Rubertsson SGrenvik AWiklund L. Blood flow and perfusion pressure during open-chest versus closed-chest cardiopulmonary resuscitation in pigs. Crit Care Med 1995; 23: 715725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144.

    Sterz FLeonov YSafar P, et al. Multifocal cerebral blood flow by Xe-CT and global cerebral metabolism after prolonged cardiac arrest in dogs. Reperfusion with open-chest CPR or cardiopulmonary bypass. Resuscitation 1992; 24: 2747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 145.

    Cave DMGazmuri RJOtto CW, et al. Part 7: CPR techniques and devices: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2010; 122 (18 suppl 3):S720728.

    • Search Google Scholar
    • Export Citation
  • 146.

    Barton LCrowe DT. Open Chest cardiopulmonary resuscitation. In: Bonagura JD, ed. Kirk's current veterinary therapy XII. Philadelphia: WB Saunders, 2000;147149.

    • Search Google Scholar
    • Export Citation
  • 147.

    Sundgreen CLarsen FSHerzog TM, et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 2001; 32: 128132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 148.

    Madl CHolzer M. Brain function after resuscitation from cardiac arrest. Curr Opin Crit Care 2004; 10: 213217.

  • 149.

    Sunde KSoreide E. Therapeutic hypothermia after cardiac arrest: where are we now? Curr Opin Crit Care 2011; 17: 247253.

  • 150.

    Nagao KKikushima KWatanabe K, et al. Early induction of hypothermia during cardiac arrest improves neurological outcomes in patients with out-of-hospital cardiac arrest who undergo emergency cardiopulmonary bypass and percutaneous coronary intervention. Circ J 2010; 74: 7785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 151.

    Hayes GM. Severe seizures associated with traumatic brain injury managed by controlled hypothermia, pharmacologic coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care (San Antonio) 2009; 19: 629634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 152.

    Kanemoto ITaguchi DYokoyama S, et al. Open heart surgery with deep hypothermia and cardiopulmonary bypass in small and toy dogs. Vet Surg 2010; 39: 674679.

    • Search Google Scholar
    • Export Citation
  • 153.

    Lavinio ATimofeev INortje J, et al. Cerebrovascular reactivity during hypothermia and rewarming. Br J Anaesth 2007; 99: 237244.

  • 154.

    Ueda YSuehiro EWei EP, et al. Uncomplicated Rapid Posthypothermic Rewarming Alters Cerebrovascular Responsiveness. Stroke 2004; 35: 601606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 155.

    Steiner TFriede TAschoff A, et al. Effect and feasibility of controlled rewarming after moderate hypothermia in stroke patients with malignant infarction of the middle cerebral artery. Stroke 2001; 32: 28332835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 156.

    Alam HBRhee PHonma K, et al. Does the rate of rewarming from profound hypothermic arrest influence the outcome in a swine model of lethal hemorrhage? J Trauma 2006; 60: 134146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 157.

    Maxwell WLWatson AQueen R, et al. Slow, medium, or fast re-warming following post-traumatic hypothermia therapy? An ultrastructural perspective. J Neurotrauma 2005; 22: 873884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 158.

    Kawahara FKadoi YSaito S, et al. Slow rewarming improves jugular venous oxygen saturation during rewarming. Acta Anaesthesiologica Scandinavica 2003; 47: 419424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 159.

    Safar PBehringer WBottiger BW, et al. Cerebral resuscitation potentials for cardiac arrest. Crit Care Med 2002; 30 (suppl 4): S140S144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 160.

    Sakabe TTateishi AMiyauchi Y, et al. Intracranial pressure following cardiopulmonary resuscitation. Intensive Care Med 1987; 13: 256259.

  • 161.

    Kern KBHilwig RWRhee KH, et al. Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol 1996; 28: 232240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 162.

    Zia AKern KB. Management of postcardiac arrest myocardial dysfunction. Curr Opin Crit Care 2011; 17: 241246.

  • 163.

    Laurent IMonchi MChiche JD, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 2002; 40: 21102116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 164.

    Kern KBHilwig RWBerg RA, et al. Postresuscitation left ventricular systolic and diastolic dysfunction. Treatment with do-butamine. Circulation 1997; 95: 26102613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 165.

    Nordmark JJohansson JSandberg D, et al. Assessment of intravascular volume by transthoracic echocardiography during therapeutic hypothermia and rewarming in cardiac arrest survivors. Resuscitation 2009; 80: 12341239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 166.

    Adrie CLaurent IMonchi M, et al. Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care 2004; 10: 208212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 167.

    Negovsky VA. Postresuscitation disease. Crit Care Med 1988; 16: 942946.

  • 168.

    Gando SNanzaki SMorimoto Y, et al. Out-of-hospital cardiac arrest increases soluble vascular endothelial adhesion molecules and neutrophil elastase associated with endothelial injury. Intensive Care Med 2000; 26: 3844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 169.

    Geppert AZorn GDelle-Karth G, et al. Plasma concentrations of von Willebrand factor and intracellular adhesion molecule-1 for prediction of outcome after successful cardiopulmonary resuscitation. Crit Care Med 2003; 31: 805811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 170.

    Hekimian GBaugnon TThuong M, et al. Cortisol levels and adrenal reserve after successful cardiac arrest resuscitation. Shock 2004; 22: 116119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 171.

    Oppert MGleiter CHMuller C, et al. Kinetics and characteristics of an acute phase response following cardiac arrest. Intensive Care Med 1999; 25: 13861394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 172.

    Rivers ENguyen BHavstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 13681377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 173.

    Gaieski DFBand RAAbella BS, et al. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation 2009; 80: 418424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 174.

    Sunde KPytte MJacobsen D, et al. Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation 2007; 73: 2939.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Small animal cardiopulmonary resuscitation requires a continuum of care: proposal for a chain of survival for veterinary patients

Manuel Boller DR MED VET, MTR, DACVECC;1, Elise M. Boller DVM, DACVECC;1, Silje Oodegard MD, PhD;1, Cynthia M. Otto DVM, PhD, DACVECC1, and 1
View More View Less
  • 1 Department of Clinical Studies–Philadelphia, School of Veterinary Medicine (Boller M, Boller E, Otto), and the Department of Emergency Medicine, School of Medicine, University of Pennsylvania (Boller M), Philadelphia, PA 19104; Faculty Division, Ulleval University Hospital, University of Oslo, Oslo, Norway (Oodegard).

Contributor Notes

Address correspondence to Dr. Manuel Boller (mboller@vet.upenn.edu).