• 1

    Kvart C, Haggstrom J. Acquired valvular heart disease. In:Ettinger SJ, Feldman EC, ed.Textbook of veterinary internal medicine. 5th ed.Philadelphia: WB Saunders, 2000;787800.

    • Search Google Scholar
    • Export Citation
  • 2

    Serfass P, Chetboul V & Benalloul T, et al. Retrospective study of 942 small-sized dogs: prevalence of left apical systolic heart murmur and left-sided heart failure, critical effects of breed, and sex. J Vet Cardiol 2006;8:1118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Grossmann G, Giesler M & Schmidt A, et al. Quantification of mitral regurgitation by colour flow Doppler imaging—value of the “proximal isovelocity surface area” method. Int J Cardiol 1993;42:165173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Zoghbi WA, Enriquez-Sarano M & Foster E, et al. American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 2003;16:777802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Boon JA. Acquired heart disease: mitral insufficiency. In:Boon JA, ed.Manual of veterinary echocardiography. Baltimore: The Williams & Wilkins Co, 1998:261286.

    • Search Google Scholar
    • Export Citation
  • 6

    Bolger AF, Eigler NL & Plaff JM, et al. Computer analysis of Doppler color flow mapping images for quantitative assessment of in vitro fluid jets. J Am Coll Cardiol 1988;12:450457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Krabil KA, Sung HW & Tamura T, et al. Factors influencing the structure and shape of stenotic and regurgitant jets: an in vitro and optical flow visualization. J Am Coll Cardiol 1989;13:16721681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Vandervoort PM, Thoreau DH & Rivera JM, et al. Automated flow rate calculations based on digital analysis of flow convergence proximal to regurgitant orifices. J Am Coll Cardiol 1993;22:535541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Enriquez-Sarano M, Miller FA & Hayes SN, et al. Effective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol 1995;25:703709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Vandervoort PM, Rivera M, Mele D. Application of color Doppler flow mapping to calculate effective regurgitant orifice area: an in vitro study and initial clinical observations. Circulation 1993;88:11501156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Kittleson MD, Brown WA. Regurgitant fraction measured by using the proximal isovelocity surface area method in dogs with chronic myxomatous mitral valve disease. J Vet Intern Med 2003;17:8488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    International Small Animal Cardiac Health Council. Appendix A. Recommendations for diagnosis of heart disease and treatment of heart failure in small animals. In:Fox PR, Sisson D, Moïse NS, ed.Textbook of canine and feline cardiology. 2nd ed.Philadelphia: WB Saunders Co, 1999;883901.

    • Search Google Scholar
    • Export Citation
  • 13

    Chetboul V, Athanassiadis N & Concordet D, et al. Observer-dependent variability of quantitative clinical endpoint: example of canine echocardiography. J Vet Pharmacol Ther 2004;27:4956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Thomas WP, Gaber CE & Jacobs GJ, et al. Recommendations for standards in transthoracic two-dimensional echocardiography in the dog and cat. Echocardiography Committee of the Specialty of Cardiology, American College of Veterinary Internal Medicine. J Vet Intern Med 1993;7:247252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Sahn DJ, DeMaria A & Kisslo J, et al. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978;58:10721083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Chetboul V, CarlosSampedrano C & Concordet D, et al. Use of quantitative two-dimensional color tissue Doppler imaging for assessment of left ventricular radial and longitudinal myocardial velocities in dogs. Am J Vet Res 2005;66:953961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Kittleson MD, Kienle RD. Pulmonary arterial and systemic arterial hypertension. In:Kittleson MD, Kienle RD, ed.Small animal cardiovascular medicine. St Louis: Mosby, 1998;433439.

    • Search Google Scholar
    • Export Citation
  • 18

    Johnson L, Boon J, Orton EC. Clinical characteristics of 53 dogs with Doppler-derived evidence of pulmonary hypertension: 1992–1996. J Vet Intern Med 1999;13:440447.

    • Search Google Scholar
    • Export Citation
  • 19

    Muzzi RAL, deAraújo RB & Muzzi LAL, et al. Regurgitant jet area by Doppler color flow mapping: quantitative assessment of mitral regurgitation severity in dogs. J Vet Cardiol 2003;5:3338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Schwammenthal E, Chen C & Giesler M, et al. New method for accurate calculation of regurgitant flow maps of the proximal flow field. Validation in a canine model of mitral regurgitation with initial application in patients. J Am Coll Cardiol 1996;27:161172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Choi H, Lee K & Lee H, et al. Quantification of mitral regurgitation using proximal isovelocity surface area method in dogs. J Vet Sci 2004;5:163171.

  • 22

    Doiguchi O, Takahashi T. Examination of quantitative analysis and measurement of the regurgitant rate in mitral valve regurgitation by the “proximal isovelocity surface area” method. J Vet Med Sci 2000;62:109112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Sahn DJ. Instrumentation and physical factors related to visualization of stenotic and regurgitant jets by Doppler color flow mapping. J Am Coll Cardiol 1988;12:13541365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Yoshida K, Yoshikawa J & Yamaura Y, et al. Value of acceleration flows and regurgitant jet direction by color Doppler flow mapping in the evaluation of mitral valve prolapse. Circulation 1990;81:879885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Bargiggia GS, Tronconi L & Sahn DJ, et al. A new method for the quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 1991;84:14811489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Grossmann G, Hoffmeister A & Imhof A, et al. Reproducibility of the proximal flow convergence method in mitral and tricuspid regurgitation. Am Heart J 2004;147:721728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Serres FJ, Chetboul V & Tissier R, et al. Doppler echocardiography-derived evidence of pulmonary arterial hypertension in dogs with degenerative mitral valve disease: 86 cases (2001–2005). J Am Vet Med Assoc 2006;229:17721778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Miro Palau V, Salvador A & Rincón DeArellano A, et al. Clinical value of parameters derived by the application of the proximal isovelocity surface area method in the assessment of mitral regurgitation. Int J Cardiol 1999;68:209216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Enriquez-Sarano M, Basmadjian AJ & Rossi A, et al. Progression of mitral regurgitation: a prospective Doppler echocardiographic study. J Am Coll Cardiol 1999;34:11371144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Enriquez-Sarano M & Avierinos J-F, Messika-Zeitoon D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 2005;352:875883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Abbasi AS, Allen MW & Decristofaro D, et al. Detection and estimation of the degree of mitral regurgitation by range-gated pulsed Doppler echocardiography. Circulation 1980;61:143147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Spain MG, Smith MD & Grayburn PA, et al. Quantitative assessment of mitral regurgitation by Doppler color flow imaging: angiographic and hemodynamic correlations. J Am Coll Cardiol 1989;13:585590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Utsunomiya T, Ogawa T & Doshi R, et al. Doppler color flow “proximal isovelocity surface area” method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol 1991;17:11031111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Simpson IA, Shiota T & Gharib M, et al. Current status of flow convergence for clinical applications: is it a leaning tower of “PISA”? J Am Coll Cardiol 1996;27:504509.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Quantification of mitral valve regurgitation in dogs with degenerative mitral valve disease by use of the proximal isovelocity surface area method

Vassiliki GouniUnité de Cardiologie d'Alfort, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France
UMR INSERM U841, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France

Search for other papers by Vassiliki Gouni in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
François J. SerresUnité de Cardiologie d'Alfort, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France

Search for other papers by François J. Serres in
Current site
Google Scholar
PubMed
Close
 DVM
,
Jean-Louis PouchelonUnité de Cardiologie d'Alfort, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France
UMR INSERM U841, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France

Search for other papers by Jean-Louis Pouchelon in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Renaud TissierUMR INSERM U841, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France

Search for other papers by Renaud Tissier in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Hervé P. LefebvreUMR 181 Physiopathologie et Toxicologie Expérimentales INRA-ENVT, Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, 31076 Toulouse cedex 03, France

Search for other papers by Hervé P. Lefebvre in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Audrey P. NicolleUnité de Cardiologie d'Alfort, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France

Search for other papers by Audrey P. Nicolle in
Current site
Google Scholar
PubMed
Close
 DVM
,
Carolina Carlos SampedranoUnité de Cardiologie d'Alfort, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France
UMR INSERM U841, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France

Search for other papers by Carolina Carlos Sampedrano in
Current site
Google Scholar
PubMed
Close
 DVM, MS
, and
Valérie ChetboulUnité de Cardiologie d'Alfort, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France
UMR INSERM U841, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94 704 Maisons-Alfort cedex, France

Search for other papers by Valérie Chetboul in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To determine the within-day and between-day variability of regurgitant fraction (RF) assessed by use of the proximal isovelocity surface area (PISA) method in awake dogs with degenerative mitral valve disease (MVD), measure RF in dogs with MVD, and assess the correlation between RF and several clinical and Doppler echocardiographic variables.

Design—Prospective study.

Animals—6 MVD-affected dogs with no clinical signs and 67 dogs with MVD of differing severity (International Small Animal Cardiac Health Council [ISACHC] classification).

Procedures—The 6 dogs were used to determine the repeatability and reproducibility of the PISA method, and RF was then assessed in 67 dogs of various ISACHC classes. Mitral valve regurgitation was also assessed from the maximum area of regurgitant jet signal-to-left atrium area (ARJ/LAA) ratio determined via color Doppler echocardiographic mapping.

Results—Within- and between-day coefficients of variation of RF were 8% and 11%, respectively. Regurgitation fraction was significantly correlated with ISACHC classification and heart murmur grade and was higher in ISACHC class III dogs (mean ± SD, 72.8 ± 9.5%) than class II (57.9 ± 20.1%) or I (40.7 ± 19.2%) dogs. Regurgitation fraction and left atriumto-aorta ratio, fractional shortening, systolic pulmonary arterial pressure, and ARJ/LAA ratio were significantly correlated.

Conclusions and Clinical Relevance—Results suggested that RF is a repeatable and reproducible variable for noninvasive quantitative evaluation of mitral valve regurgitation in awake dogs. Regurgitation fraction also correlated well with disease severity. It appears that this Doppler echocardiographic index may be useful in longitudinal studies of MVD in dogs.

Abstract

Objective—To determine the within-day and between-day variability of regurgitant fraction (RF) assessed by use of the proximal isovelocity surface area (PISA) method in awake dogs with degenerative mitral valve disease (MVD), measure RF in dogs with MVD, and assess the correlation between RF and several clinical and Doppler echocardiographic variables.

Design—Prospective study.

Animals—6 MVD-affected dogs with no clinical signs and 67 dogs with MVD of differing severity (International Small Animal Cardiac Health Council [ISACHC] classification).

Procedures—The 6 dogs were used to determine the repeatability and reproducibility of the PISA method, and RF was then assessed in 67 dogs of various ISACHC classes. Mitral valve regurgitation was also assessed from the maximum area of regurgitant jet signal-to-left atrium area (ARJ/LAA) ratio determined via color Doppler echocardiographic mapping.

Results—Within- and between-day coefficients of variation of RF were 8% and 11%, respectively. Regurgitation fraction was significantly correlated with ISACHC classification and heart murmur grade and was higher in ISACHC class III dogs (mean ± SD, 72.8 ± 9.5%) than class II (57.9 ± 20.1%) or I (40.7 ± 19.2%) dogs. Regurgitation fraction and left atriumto-aorta ratio, fractional shortening, systolic pulmonary arterial pressure, and ARJ/LAA ratio were significantly correlated.

Conclusions and Clinical Relevance—Results suggested that RF is a repeatable and reproducible variable for noninvasive quantitative evaluation of mitral valve regurgitation in awake dogs. Regurgitation fraction also correlated well with disease severity. It appears that this Doppler echocardiographic index may be useful in longitudinal studies of MVD in dogs.

Contributor Notes

Address correspondence to Dr. Chetboul.