Moon HW. Mechanisms in the pathogenesis of diarrhea: a review. J Am Vet Med Assoc 1978;172:443–448.
Field M. Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 2003;111:931–943.
Banks WJ. Applied veterinary histology. Baltimore: The Williams & Wilkins Co, 1981.
Argenzio RA, Moon HW & Kemeny LJ, et al. Colonic compensation in transmissible gastroenteritis of swine. Gastroenterology 1984;86:1501–1509.
Lundgren O. Enteric nerves and diarrhoea. Pharmacol Toxicol 2002;90:109–120.
Sellin JH. Molecular biology of membrane transport disorders. In:Schultz SG, ed.The pathophysiology of diarrhea. New York: Plenum Press, 1996;541–562.
Chang EB, Field M, Miller RJ. A2-Adrenergic receptor regulation of ion transport in rabbit ileum. Am J Physiol 1982;242:G237–G242.
Gayle JM, Blikslager AT, Jones SL. Role of neutrophils in intestinal mucosal injury. J Am Vet Med Assoc 2000;217:498–500.
Pothoulakis C, Castagliuolo I, LaMont JT. Nerves and intestinal mast cells modulate responses to enterotoxins. News Physiol Sci 1998;13:58–63.
Perdue MH, Ramage JK & Burget D, et al. Intestinal mucosal injury is associated with mast cell activation and leukotriene generation during Nippostrongylus-induced inflammation in the rat. Dig Dis Sci 1989;34:724–731.
Zdebik AA, Cuffe JE & Bertog M, et al. Additional disruption of the ClC-2 Cl(–) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem 2004;279:22276–22283.
Clarke LL, Stien X, Walker NM. Intestinal bicarbonate secretion in cystic fibrosis mice. JOP 2001;2 (suppl 4):263–267.
Keely SJ, Barrett KE. Regulation of chloride secretion. Novel pathways and messengers. Ann N Y Acad Sci 2000;915:67–76.
Duggan C, Fontaine O & Pierce NF, et al. Scientific rationale for a change in the composition of oral rehydration solution. JAMA 2004;291:2628–2631.
Turner JR, Madara JL. Physiological regulation of intestinal epithelial tight junctions as a consequence of Na(+)-coupled nutrient transport. Gastroenterology 1995;109:1391–1396.
Zachos NC, Tse M, Donowitz M. Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol 2005;67:411–443.
Praetorius J, Andreasen D & Jensen BL, et al. NHE1, NHE2, and NHE3 contribute to regulation of intracellular pH in murine duodenal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2000;278:G197–G206.
Jacob P, Rossmann H & Lamprecht G, et al. Down-regulated in adenoma mediates apical Cl−/HCO3− exchange in rabbit, rat, and human duodenum. Gastroenterology 2002;122:709–724.
Schultheis PJ, Clarke LL & Meneton P, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 1998;19:282–285.
Argenzio RA, Rhoads JM & Armstrong M, et al. Glutamine stimulates prostaglandin-sensitive Na(+)-H+ exchange in experimental porcine cryptosporidiosis. Gastroenterology 1994;106:1418–1428.
Clarke LL, Ganjam VK & Fichtenbaum B, et al. Effect of feeding on renin-angiotensin-aldosterone system of the horse. Am J Physiol 1988;254:R524–R530.
Law D. Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E coli. J Appl Microbiol 2000;88:729–745.
Jin LZ, Zhao X. Intestinal receptors for adhesive fimbriae of enterotoxigenic Escherichia coli (ETEC) K88 in swine—a review. Appl Microbiol Biotechnol 2000;54:311–318.
Chandler DS, Mynott TL & Luke RK, et al. The distribution and stability of Escherichia coli K88 receptor in the gastrointestinal tract of the pig. Vet Microbiol 1994;38:203–215.
Peterson JW, Whipp SC. Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect Immun 1995;63:1452–1461.
Turvill JL, Kasapidis P, Farthing MJ. The sigma ligand, igmesine, inhibits cholera toxin and Escherichia coli enterotoxin induced jejunal secretion in the rat. Gut 1999;45:564–569.
Mourad FH, Nassar CF. Effect of vasoactive intestinal polypeptide (VIP) antagonism on rat jejunal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins. Gut 2000;47:382–386.
Berberov EM, Zhou Y & Francis DH, et al. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun 2004;72:3914–3924.
Ruiz MC, Cohen J, Michelangeli F. Role of Ca2+ in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium 2000;28:137–149.
Reynolds DJ, Hall GA & Debney TG, et al. Pathology of natural rotavirus infection in clinically normal calves. Res Vet Sci 1985;38:264–269.
Halaihel N, Lievin V & Alvarado F, et al. Rotavirus infection impairs intestinal brush-border membrane Na(+)-solute cotransport activities in young rabbits. Am J Physiol Gastrointest Liver Physiol 2000;279:G587–G596.
Collins J, Starkey WG & Wallis TS, et al. Intestinal enzyme profiles in normal and rotavirus-infected mice. J Pediatr Gastroenterol Nutr 1988;7:264–272.
Vellenga L, Egberts HJ & Wensing T, et al. Intestinal permeability in pigs during rotavirus infection. Am J Vet Res 1992;53:1180–1183.
Zijlstra RT, Donovan SM & Odle J, et al. Protein-energy malnutrition delays small-intestinal recovery in neonatal pigs infected with rotavirus. J Nutr 1997;127:1118–1127.
Zijlstra RT, McCracken BA & Odle J, et al. Malnutrition modifies pig small intestinal inflammatory responses to rotavirus. J Nutr 1999;129:838–843.
Morris AP, Scott JK & Ball JM, et al. NSP4 elicits age-dependent diarrhea and Ca(2+) mediated I(–) influx into intestinal crypts of CF mice. Am J Physiol 1999;277:G431–G444.
Halaihel N, Lievin V & Ball JM, et al. Direct inhibitory effect of rotavirus NSP4(114-135) peptide on the Na(+)-D-glucose symporter of rabbit intestinal brush border membrane. J Virol 2000;74:9464–9470.
Desselberger U, Gray J. Viral gastroenteritis. In:Michelangeli F, Ruiz MC, ed.Physiology and pathophysiology of the gut in relation to viral diarrhea. Amsterdam: Elsevier Science BV, 2003;23–50.
Ball JM, Tian P & Zeng CQ, et al. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 1996;272:101–104.
Iosef C, Chang KO & Azevedo MS, et al. Systemic and intestinal antibody responses to NSP4 enterotoxin of Wa human rotavirus in a gnotobiotic pig model of human rotavirus disease. J Med Virol 2002;68:119–128.
Morilla A, Arriaga C & Ruiz A, et al. Association between diarrhoea and shedding of group A and atypical groups B to E rotaviruses in suckling pigs. Ann Rech Vet 1991;22:193–200.
Lundgren O, Peregrin AT & Persson K, et al. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 2000;287:491–495.
Kordasti S, Sjovall H & Lundgren O, et al. Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea. Gut 2004;53:952–957.
Tafazoli F, Zeng CQ & Estes MK, et al. NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J Virol 2001;75:1540–1546.
Morin M, Morehouse LG. Transmissible gastroenteritis in feeder pigs: observations on the jejunal epithelium of normal feeder pigs and feeder pigs infected with TGE virus. Can J Comp Med 1974;38:227–235.
Homaidan FR, Torres A & Donowitz M, et al. Electrolyte transport in piglets infected with transmissible gastroenteritis virus. Stimulation by verapamil and clonidine. Gastroenterology 1991;101:895–901.
Rhoads JM, MacLeod RJ, Hamilton JR. Alanine enhances jejunal sodium absorption in the presence of glucose: studies in piglet viral diarrhea. Pediatr Res 1986;20:879–883.
Vellenga L, Wensing T & Egberts HJ, et al. Intestinal permeability to macromolecules in piglets infected with transmissible gastroenteritis virus. Vet Res Commun 1988;12:481–489.
Argenzio RA, Whipp SC, Glock RD. Pathophysiology of swine dysentery: colonic transport and permeability studies. J Infect Dis 1980;142:676–684.
Schmall LM, Argenzio RA, Whipp SC. Pathophysiologic features of swine dysentery: cyclic nucleotide-independent production of diarrhea. Am J Vet Res 1983;44:1309–1316.
Argenzio RA. Glucose-stimulated fluid absorption in the pig small intestine during the early stage of swine dysentery. Am J Vet Res 1980;41:2000–2006.
Bland AP, Frost AJ, Lysons RJ. Susceptibility of porcine ileal enterocytes to the cytotoxin of Serpulina hyodysenteriae and the resolution of the epithelial lesions: an electron microscopic study. Vet Pathol 1995;32:24–35.
Lysons RJ, Kent KA & Bland AP, et al. A cytotoxic haemolysin from Treponema hyodysenteriae—a probable virulence determinant in swine dysentery. J Med Microbiol 1991;34:97–102.
Whipp SC, Harris DL & Kinyon JM, et al. Enteropathogenicity testing of Treponema hyodysenteriae in ligated colonic loops of swine. Am J Vet Res 1978;39:1293–1296.
Eustis SL, Nelson DT. Lesions associated with coccidiosis in nursing piglets. Vet Pathol 1981;18:21–28.
Galyov EE, Wood MW & Rosqvist R, et al. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol 1997;25:903–912.
Yu Y, Zeng H & Lyons S, et al. TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism. Am J Physiol Gastrointest Liver Physiol 2003;285:G282–G290.
McCormick BA, Parkos CA & Colgan SP, et al. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol 1998;160:455–466.
Bertelsen LS, Paesold G & Eckmann L, et al. Salmonella infection induces a hypersecretory phenotype in human intestinal xenografts by inducing cyclooxygenase 2. Infect Immun 2003;71:2102–2109.
Grondahl ML, Jensen GM & Nielsen CG, et al. Secretory pathways in Salmonella Typhimurium-induced fluid accumulation in the porcine small intestine. J Med Microbiol 1998;47:151–157.
Brunsson I. Enteric nerves mediate the fluid secretory response due to Salmonella typhimurium R5 infection in the rat small intestine. Acta Physiol Scand 1987;131:609–617.
Tsolis RM, Adams LG & Ficht TA, et al. Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 1999;67:4879–4885.
Hecht G, Pothoulakis C & LaMont JT, et al. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 1988;82:1516–1524.
Branka JE, Vallette G & Jarry A, et al. Early functional effects of Clostridium difficile toxin A on human colonocytes. Gastroenterology 1997;112:1887–1894.
Castagliuolo I, Keates AC & Qiu B, et al. Increased substance P responses in dorsal root ganglia and intestinal macrophages during Clostridium difficile toxin A enteritis in rats. Proc Natl Acad Sci U S A 1997;94:4788–4793.
Castagliuolo I, Riegler M & Pasha A, et al. Neurokinin-1 (NK-1) receptor is required in Clostridium difficile-induced enteritis. J Clin Invest 1998;101:1547–1550.
Pothoulakis C, Castagliuolo I & LaMont JT, et al. CP-96,345, a substance P antagonist, inhibits rat intestinal responses to Clostridium difficile toxin A but not cholera toxin. Proc Natl Acad Sci U S A 1994;91:947–951.
Castagliuolo I, LaMont JT & Letourneau R, et al. Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum. Gastroenterology 1994;107:657–665.
McOrist S, Lawson GH & Rowland AC, et al. Early lesions of proliferative enteritis in pigs and hamsters. Vet Pathol 1989;26:260–264.
McCluskey J, Hannigan J & Harris JD, et al. LsaA, an antigen involved in cell attachment and invasion, is expressed by Lawsonia intracellularis during infection in vitro and in vivo. Infect Immun 2002;70:2899–2907.
Love DN, Love RJ. Pathology of proliferative haemorrhagic enteropathy in pigs. Vet Pathol 1979;16:41–48.
Rowland AC, Lawson GH. Intestinal adenomatosis in the pig: a possible relationship with a haemorrhagic enteropathy. Res Vet Sci 1975;18:263–268.
MacIntyre N, Smith DG & Shaw DJ, et al. Immunopathogenesis of experimentally induced proliferative enteropathy in pigs. Vet Pathol 2003;40:421–432.
Imberechts H, Bertschinger HU & Nagy B, et al. Fimbrial colonisation factors F18ab and F18ac of Escherichia coli isolated from pigs with postweaning diarrhea and edema disease. Adv Exp Med Biol 1997;412:175–183.
Waddell TE, Coomber BL, Gyles CL. Localization of potential binding sites for the edema disease verotoxin (VT2e) in pigs. Can J Vet Res 1998;62:81–86.
Waddell TE, Gyles CL. Sodium deoxycholate facilitates systemic absorption of verotoxin 2e from pig intestine. Infect Immun 1995;63:4953–4956.
Nabuurs MJ, Van DeWeijgert EJ & Grootendorst AF, et al. Oedema disease is associated with metabolic acidosis and small intestinal acidosis. Res Vet Sci 2001;70:247–253.
Smith HW, Halls S. The production of oedema disease and diarrhoea in weaned pigs by the oral administration of Escherichia coli: factors that influence the course of the experimental disease. J Med Microbiol 1968;1:45–59.
Songer JG, Uzal FA. Clostridial enteric infections in pigs. J Vet Diagn Invest 2005;17:528–536.
Springer S, Selbitz HJ. The control of necrotic enteritis in sucking piglets by means of a Clostridium perfringens toxoid vaccine. FEMS Immunol Med Microbiol 1999;24:333–336.
Rehman H, Awad WA & Lindner I, et al. Clostridium perfringens alpha toxin affects electrophysiological properties of isolated jejunal mucosa of laying hens. Poult Sci 2006;85:1298–1302.
Bueschel DM, Jost BH & Billington SJ, et al. Prevalence of cpb2, encoding beta2 toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype. Vet Microbiol 2003;94:121–129.
Waters M, Savoie A & Garmory HS, et al. Genotyping and phenotyping of beta2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. J Clin Microbiol 2003;41:3584–3591.
Estrada Correa AE, Taylor DJ. Porcine Clostridium perfringens type A spores, enterotoxin and antibody to enterotoxin. Vet Rec 1989;124:606–610.
Popoff MR, Dodin A. Survey of neuraminidase production by Clostridium butyricum, Clostridium beijerinckii, and Clostridium difficile strains from clinical and nonclinical sources. J Clin Microbiol 1985;22:873–876.
Jones PH, Roe JM, Miller BG. Effects of stressors on immune parameters and on the faecal shedding of enterotoxigenic Escherichia coli in piglets following experimental inoculation. Res Vet Sci 2001;70:9–17.
Shimizu M, Shimizu Y, Kodama Y. Effects of ambient temperatures on induction of transmissible gastroenteritis in feeder pigs. Infect Immun 1978;21:747–752.
Moeser A, VanderKlok C & Ryan K, et al. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am J Physiol Gastrointest Liver Physiol 2007;292:G173–G181.
Moeser AJ, Almond GW & Baker BB, et al. Does weaning age influence immediate and long-term gastrointestinal health in the pig?, in Proceedings. 37th Ann Meet Am Assoc Swine Vet 2006;29–32.
Nagy B, Fekete PZ. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol 2005;295:443–454.
Nagy B, Casey TA & Whipp SC, et al. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age. Infect Immun 1992;60:1285–1294.
Erlwanger KH, Unmack MA & Grondahl ML, et al. Effect of age on vasoactive intestinal polypeptide-induced short-circuit current in porcine jejunum. Comp Biochem Physiol A Mol Integr Physiol 1999;124:29–33.
Advertisement
Dr. Moeser was a third-year student at the time of the study.
Moon HW. Mechanisms in the pathogenesis of diarrhea: a review. J Am Vet Med Assoc 1978;172:443–448.
Field M. Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 2003;111:931–943.
Banks WJ. Applied veterinary histology. Baltimore: The Williams & Wilkins Co, 1981.
Argenzio RA, Moon HW & Kemeny LJ, et al. Colonic compensation in transmissible gastroenteritis of swine. Gastroenterology 1984;86:1501–1509.
Lundgren O. Enteric nerves and diarrhoea. Pharmacol Toxicol 2002;90:109–120.
Sellin JH. Molecular biology of membrane transport disorders. In:Schultz SG, ed.The pathophysiology of diarrhea. New York: Plenum Press, 1996;541–562.
Chang EB, Field M, Miller RJ. A2-Adrenergic receptor regulation of ion transport in rabbit ileum. Am J Physiol 1982;242:G237–G242.
Gayle JM, Blikslager AT, Jones SL. Role of neutrophils in intestinal mucosal injury. J Am Vet Med Assoc 2000;217:498–500.
Pothoulakis C, Castagliuolo I, LaMont JT. Nerves and intestinal mast cells modulate responses to enterotoxins. News Physiol Sci 1998;13:58–63.
Perdue MH, Ramage JK & Burget D, et al. Intestinal mucosal injury is associated with mast cell activation and leukotriene generation during Nippostrongylus-induced inflammation in the rat. Dig Dis Sci 1989;34:724–731.
Zdebik AA, Cuffe JE & Bertog M, et al. Additional disruption of the ClC-2 Cl(–) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem 2004;279:22276–22283.
Clarke LL, Stien X, Walker NM. Intestinal bicarbonate secretion in cystic fibrosis mice. JOP 2001;2 (suppl 4):263–267.
Keely SJ, Barrett KE. Regulation of chloride secretion. Novel pathways and messengers. Ann N Y Acad Sci 2000;915:67–76.
Duggan C, Fontaine O & Pierce NF, et al. Scientific rationale for a change in the composition of oral rehydration solution. JAMA 2004;291:2628–2631.
Turner JR, Madara JL. Physiological regulation of intestinal epithelial tight junctions as a consequence of Na(+)-coupled nutrient transport. Gastroenterology 1995;109:1391–1396.
Zachos NC, Tse M, Donowitz M. Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol 2005;67:411–443.
Praetorius J, Andreasen D & Jensen BL, et al. NHE1, NHE2, and NHE3 contribute to regulation of intracellular pH in murine duodenal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2000;278:G197–G206.
Jacob P, Rossmann H & Lamprecht G, et al. Down-regulated in adenoma mediates apical Cl−/HCO3− exchange in rabbit, rat, and human duodenum. Gastroenterology 2002;122:709–724.
Schultheis PJ, Clarke LL & Meneton P, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 1998;19:282–285.
Argenzio RA, Rhoads JM & Armstrong M, et al. Glutamine stimulates prostaglandin-sensitive Na(+)-H+ exchange in experimental porcine cryptosporidiosis. Gastroenterology 1994;106:1418–1428.
Clarke LL, Ganjam VK & Fichtenbaum B, et al. Effect of feeding on renin-angiotensin-aldosterone system of the horse. Am J Physiol 1988;254:R524–R530.
Law D. Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E coli. J Appl Microbiol 2000;88:729–745.
Jin LZ, Zhao X. Intestinal receptors for adhesive fimbriae of enterotoxigenic Escherichia coli (ETEC) K88 in swine—a review. Appl Microbiol Biotechnol 2000;54:311–318.
Chandler DS, Mynott TL & Luke RK, et al. The distribution and stability of Escherichia coli K88 receptor in the gastrointestinal tract of the pig. Vet Microbiol 1994;38:203–215.
Peterson JW, Whipp SC. Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect Immun 1995;63:1452–1461.
Turvill JL, Kasapidis P, Farthing MJ. The sigma ligand, igmesine, inhibits cholera toxin and Escherichia coli enterotoxin induced jejunal secretion in the rat. Gut 1999;45:564–569.
Mourad FH, Nassar CF. Effect of vasoactive intestinal polypeptide (VIP) antagonism on rat jejunal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins. Gut 2000;47:382–386.
Berberov EM, Zhou Y & Francis DH, et al. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun 2004;72:3914–3924.
Ruiz MC, Cohen J, Michelangeli F. Role of Ca2+ in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium 2000;28:137–149.
Reynolds DJ, Hall GA & Debney TG, et al. Pathology of natural rotavirus infection in clinically normal calves. Res Vet Sci 1985;38:264–269.
Halaihel N, Lievin V & Alvarado F, et al. Rotavirus infection impairs intestinal brush-border membrane Na(+)-solute cotransport activities in young rabbits. Am J Physiol Gastrointest Liver Physiol 2000;279:G587–G596.
Collins J, Starkey WG & Wallis TS, et al. Intestinal enzyme profiles in normal and rotavirus-infected mice. J Pediatr Gastroenterol Nutr 1988;7:264–272.
Vellenga L, Egberts HJ & Wensing T, et al. Intestinal permeability in pigs during rotavirus infection. Am J Vet Res 1992;53:1180–1183.
Zijlstra RT, Donovan SM & Odle J, et al. Protein-energy malnutrition delays small-intestinal recovery in neonatal pigs infected with rotavirus. J Nutr 1997;127:1118–1127.
Zijlstra RT, McCracken BA & Odle J, et al. Malnutrition modifies pig small intestinal inflammatory responses to rotavirus. J Nutr 1999;129:838–843.
Morris AP, Scott JK & Ball JM, et al. NSP4 elicits age-dependent diarrhea and Ca(2+) mediated I(–) influx into intestinal crypts of CF mice. Am J Physiol 1999;277:G431–G444.
Halaihel N, Lievin V & Ball JM, et al. Direct inhibitory effect of rotavirus NSP4(114-135) peptide on the Na(+)-D-glucose symporter of rabbit intestinal brush border membrane. J Virol 2000;74:9464–9470.
Desselberger U, Gray J. Viral gastroenteritis. In:Michelangeli F, Ruiz MC, ed.Physiology and pathophysiology of the gut in relation to viral diarrhea. Amsterdam: Elsevier Science BV, 2003;23–50.
Ball JM, Tian P & Zeng CQ, et al. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 1996;272:101–104.
Iosef C, Chang KO & Azevedo MS, et al. Systemic and intestinal antibody responses to NSP4 enterotoxin of Wa human rotavirus in a gnotobiotic pig model of human rotavirus disease. J Med Virol 2002;68:119–128.
Morilla A, Arriaga C & Ruiz A, et al. Association between diarrhoea and shedding of group A and atypical groups B to E rotaviruses in suckling pigs. Ann Rech Vet 1991;22:193–200.
Lundgren O, Peregrin AT & Persson K, et al. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 2000;287:491–495.
Kordasti S, Sjovall H & Lundgren O, et al. Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea. Gut 2004;53:952–957.
Tafazoli F, Zeng CQ & Estes MK, et al. NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J Virol 2001;75:1540–1546.
Morin M, Morehouse LG. Transmissible gastroenteritis in feeder pigs: observations on the jejunal epithelium of normal feeder pigs and feeder pigs infected with TGE virus. Can J Comp Med 1974;38:227–235.
Homaidan FR, Torres A & Donowitz M, et al. Electrolyte transport in piglets infected with transmissible gastroenteritis virus. Stimulation by verapamil and clonidine. Gastroenterology 1991;101:895–901.
Rhoads JM, MacLeod RJ, Hamilton JR. Alanine enhances jejunal sodium absorption in the presence of glucose: studies in piglet viral diarrhea. Pediatr Res 1986;20:879–883.
Vellenga L, Wensing T & Egberts HJ, et al. Intestinal permeability to macromolecules in piglets infected with transmissible gastroenteritis virus. Vet Res Commun 1988;12:481–489.
Argenzio RA, Whipp SC, Glock RD. Pathophysiology of swine dysentery: colonic transport and permeability studies. J Infect Dis 1980;142:676–684.
Schmall LM, Argenzio RA, Whipp SC. Pathophysiologic features of swine dysentery: cyclic nucleotide-independent production of diarrhea. Am J Vet Res 1983;44:1309–1316.
Argenzio RA. Glucose-stimulated fluid absorption in the pig small intestine during the early stage of swine dysentery. Am J Vet Res 1980;41:2000–2006.
Bland AP, Frost AJ, Lysons RJ. Susceptibility of porcine ileal enterocytes to the cytotoxin of Serpulina hyodysenteriae and the resolution of the epithelial lesions: an electron microscopic study. Vet Pathol 1995;32:24–35.
Lysons RJ, Kent KA & Bland AP, et al. A cytotoxic haemolysin from Treponema hyodysenteriae—a probable virulence determinant in swine dysentery. J Med Microbiol 1991;34:97–102.
Whipp SC, Harris DL & Kinyon JM, et al. Enteropathogenicity testing of Treponema hyodysenteriae in ligated colonic loops of swine. Am J Vet Res 1978;39:1293–1296.
Eustis SL, Nelson DT. Lesions associated with coccidiosis in nursing piglets. Vet Pathol 1981;18:21–28.
Galyov EE, Wood MW & Rosqvist R, et al. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol 1997;25:903–912.
Yu Y, Zeng H & Lyons S, et al. TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism. Am J Physiol Gastrointest Liver Physiol 2003;285:G282–G290.
McCormick BA, Parkos CA & Colgan SP, et al. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol 1998;160:455–466.
Bertelsen LS, Paesold G & Eckmann L, et al. Salmonella infection induces a hypersecretory phenotype in human intestinal xenografts by inducing cyclooxygenase 2. Infect Immun 2003;71:2102–2109.
Grondahl ML, Jensen GM & Nielsen CG, et al. Secretory pathways in Salmonella Typhimurium-induced fluid accumulation in the porcine small intestine. J Med Microbiol 1998;47:151–157.
Brunsson I. Enteric nerves mediate the fluid secretory response due to Salmonella typhimurium R5 infection in the rat small intestine. Acta Physiol Scand 1987;131:609–617.
Tsolis RM, Adams LG & Ficht TA, et al. Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 1999;67:4879–4885.
Hecht G, Pothoulakis C & LaMont JT, et al. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 1988;82:1516–1524.
Branka JE, Vallette G & Jarry A, et al. Early functional effects of Clostridium difficile toxin A on human colonocytes. Gastroenterology 1997;112:1887–1894.
Castagliuolo I, Keates AC & Qiu B, et al. Increased substance P responses in dorsal root ganglia and intestinal macrophages during Clostridium difficile toxin A enteritis in rats. Proc Natl Acad Sci U S A 1997;94:4788–4793.
Castagliuolo I, Riegler M & Pasha A, et al. Neurokinin-1 (NK-1) receptor is required in Clostridium difficile-induced enteritis. J Clin Invest 1998;101:1547–1550.
Pothoulakis C, Castagliuolo I & LaMont JT, et al. CP-96,345, a substance P antagonist, inhibits rat intestinal responses to Clostridium difficile toxin A but not cholera toxin. Proc Natl Acad Sci U S A 1994;91:947–951.
Castagliuolo I, LaMont JT & Letourneau R, et al. Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum. Gastroenterology 1994;107:657–665.
McOrist S, Lawson GH & Rowland AC, et al. Early lesions of proliferative enteritis in pigs and hamsters. Vet Pathol 1989;26:260–264.
McCluskey J, Hannigan J & Harris JD, et al. LsaA, an antigen involved in cell attachment and invasion, is expressed by Lawsonia intracellularis during infection in vitro and in vivo. Infect Immun 2002;70:2899–2907.
Love DN, Love RJ. Pathology of proliferative haemorrhagic enteropathy in pigs. Vet Pathol 1979;16:41–48.
Rowland AC, Lawson GH. Intestinal adenomatosis in the pig: a possible relationship with a haemorrhagic enteropathy. Res Vet Sci 1975;18:263–268.
MacIntyre N, Smith DG & Shaw DJ, et al. Immunopathogenesis of experimentally induced proliferative enteropathy in pigs. Vet Pathol 2003;40:421–432.
Imberechts H, Bertschinger HU & Nagy B, et al. Fimbrial colonisation factors F18ab and F18ac of Escherichia coli isolated from pigs with postweaning diarrhea and edema disease. Adv Exp Med Biol 1997;412:175–183.
Waddell TE, Coomber BL, Gyles CL. Localization of potential binding sites for the edema disease verotoxin (VT2e) in pigs. Can J Vet Res 1998;62:81–86.
Waddell TE, Gyles CL. Sodium deoxycholate facilitates systemic absorption of verotoxin 2e from pig intestine. Infect Immun 1995;63:4953–4956.
Nabuurs MJ, Van DeWeijgert EJ & Grootendorst AF, et al. Oedema disease is associated with metabolic acidosis and small intestinal acidosis. Res Vet Sci 2001;70:247–253.
Smith HW, Halls S. The production of oedema disease and diarrhoea in weaned pigs by the oral administration of Escherichia coli: factors that influence the course of the experimental disease. J Med Microbiol 1968;1:45–59.
Songer JG, Uzal FA. Clostridial enteric infections in pigs. J Vet Diagn Invest 2005;17:528–536.
Springer S, Selbitz HJ. The control of necrotic enteritis in sucking piglets by means of a Clostridium perfringens toxoid vaccine. FEMS Immunol Med Microbiol 1999;24:333–336.
Rehman H, Awad WA & Lindner I, et al. Clostridium perfringens alpha toxin affects electrophysiological properties of isolated jejunal mucosa of laying hens. Poult Sci 2006;85:1298–1302.
Bueschel DM, Jost BH & Billington SJ, et al. Prevalence of cpb2, encoding beta2 toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype. Vet Microbiol 2003;94:121–129.
Waters M, Savoie A & Garmory HS, et al. Genotyping and phenotyping of beta2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. J Clin Microbiol 2003;41:3584–3591.
Estrada Correa AE, Taylor DJ. Porcine Clostridium perfringens type A spores, enterotoxin and antibody to enterotoxin. Vet Rec 1989;124:606–610.
Popoff MR, Dodin A. Survey of neuraminidase production by Clostridium butyricum, Clostridium beijerinckii, and Clostridium difficile strains from clinical and nonclinical sources. J Clin Microbiol 1985;22:873–876.
Jones PH, Roe JM, Miller BG. Effects of stressors on immune parameters and on the faecal shedding of enterotoxigenic Escherichia coli in piglets following experimental inoculation. Res Vet Sci 2001;70:9–17.
Shimizu M, Shimizu Y, Kodama Y. Effects of ambient temperatures on induction of transmissible gastroenteritis in feeder pigs. Infect Immun 1978;21:747–752.
Moeser A, VanderKlok C & Ryan K, et al. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am J Physiol Gastrointest Liver Physiol 2007;292:G173–G181.
Moeser AJ, Almond GW & Baker BB, et al. Does weaning age influence immediate and long-term gastrointestinal health in the pig?, in Proceedings. 37th Ann Meet Am Assoc Swine Vet 2006;29–32.
Nagy B, Fekete PZ. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol 2005;295:443–454.
Nagy B, Casey TA & Whipp SC, et al. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age. Infect Immun 1992;60:1285–1294.
Erlwanger KH, Unmack MA & Grondahl ML, et al. Effect of age on vasoactive intestinal polypeptide-induced short-circuit current in porcine jejunum. Comp Biochem Physiol A Mol Integr Physiol 1999;124:29–33.
Advertisement