Mechanisms of porcine diarrheal disease

Adam J. Moeser Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.

Search for other papers by Adam J. Moeser in
Current site
Google Scholar
PubMed
Close
 PhD
and
Anthony T. Blikslager Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.

Search for other papers by Anthony T. Blikslager in
Current site
Google Scholar
PubMed
Close
 DVM, PhD, DACVS

Contributor Notes

Dr. Moeser was a third-year student at the time of the study.

Address correspondence to Dr. Moeser.
  • 1

    Moon HW. Mechanisms in the pathogenesis of diarrhea: a review. J Am Vet Med Assoc 1978;172:443–448.

  • 2

    Field M. Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 2003;111:931–943.

  • 3

    Banks WJ. Applied veterinary histology. Baltimore: The Williams & Wilkins Co, 1981.

  • 4

    Argenzio RA, Moon HW & Kemeny LJ, et al. Colonic compensation in transmissible gastroenteritis of swine. Gastroenterology 1984;86:1501–1509.

  • 5

    Lundgren O. Enteric nerves and diarrhoea. Pharmacol Toxicol 2002;90:109–120.

  • 6

    Sellin JH. Molecular biology of membrane transport disorders. In:Schultz SG, ed.The pathophysiology of diarrhea. New York: Plenum Press, 1996;541–562.

    • Search Google Scholar
    • Export Citation
  • 7

    Chang EB, Field M, Miller RJ. A2-Adrenergic receptor regulation of ion transport in rabbit ileum. Am J Physiol 1982;242:G237–G242.

  • 8

    Gayle JM, Blikslager AT, Jones SL. Role of neutrophils in intestinal mucosal injury. J Am Vet Med Assoc 2000;217:498–500.

  • 9

    Pothoulakis C, Castagliuolo I, LaMont JT. Nerves and intestinal mast cells modulate responses to enterotoxins. News Physiol Sci 1998;13:58–63.

    • Search Google Scholar
    • Export Citation
  • 10

    Perdue MH, Ramage JK & Burget D, et al. Intestinal mucosal injury is associated with mast cell activation and leukotriene generation during Nippostrongylus-induced inflammation in the rat. Dig Dis Sci 1989;34:724–731.

    • Search Google Scholar
    • Export Citation
  • 11

    Zdebik AA, Cuffe JE & Bertog M, et al. Additional disruption of the ClC-2 Cl(–) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem 2004;279:22276–22283.

    • Search Google Scholar
    • Export Citation
  • 12

    Clarke LL, Stien X, Walker NM. Intestinal bicarbonate secretion in cystic fibrosis mice. JOP 2001;2 (suppl 4):263–267.

  • 13

    Keely SJ, Barrett KE. Regulation of chloride secretion. Novel pathways and messengers. Ann N Y Acad Sci 2000;915:67–76.

  • 14

    Duggan C, Fontaine O & Pierce NF, et al. Scientific rationale for a change in the composition of oral rehydration solution. JAMA 2004;291:2628–2631.

    • Search Google Scholar
    • Export Citation
  • 15

    Turner JR, Madara JL. Physiological regulation of intestinal epithelial tight junctions as a consequence of Na(+)-coupled nutrient transport. Gastroenterology 1995;109:1391–1396.

    • Search Google Scholar
    • Export Citation
  • 16

    Zachos NC, Tse M, Donowitz M. Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol 2005;67:411–443.

  • 17

    Praetorius J, Andreasen D & Jensen BL, et al. NHE1, NHE2, and NHE3 contribute to regulation of intracellular pH in murine duodenal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2000;278:G197–G206.

    • Search Google Scholar
    • Export Citation
  • 18

    Jacob P, Rossmann H & Lamprecht G, et al. Down-regulated in adenoma mediates apical Cl−/HCO3− exchange in rabbit, rat, and human duodenum. Gastroenterology 2002;122:709–724.

    • Search Google Scholar
    • Export Citation
  • 19

    Schultheis PJ, Clarke LL & Meneton P, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 1998;19:282–285.

    • Search Google Scholar
    • Export Citation
  • 20

    Argenzio RA, Rhoads JM & Armstrong M, et al. Glutamine stimulates prostaglandin-sensitive Na(+)-H+ exchange in experimental porcine cryptosporidiosis. Gastroenterology 1994;106:1418–1428.

    • Search Google Scholar
    • Export Citation
  • 21

    Clarke LL, Ganjam VK & Fichtenbaum B, et al. Effect of feeding on renin-angiotensin-aldosterone system of the horse. Am J Physiol 1988;254:R524–R530.

    • Search Google Scholar
    • Export Citation
  • 22

    Law D. Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E coli. J Appl Microbiol 2000;88:729–745.

  • 23

    Jin LZ, Zhao X. Intestinal receptors for adhesive fimbriae of enterotoxigenic Escherichia coli (ETEC) K88 in swine—a review. Appl Microbiol Biotechnol 2000;54:311–318.

    • Search Google Scholar
    • Export Citation
  • 24

    Chandler DS, Mynott TL & Luke RK, et al. The distribution and stability of Escherichia coli K88 receptor in the gastrointestinal tract of the pig. Vet Microbiol 1994;38:203–215.

    • Search Google Scholar
    • Export Citation
  • 25

    Peterson JW, Whipp SC. Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect Immun 1995;63:1452–1461.

    • Search Google Scholar
    • Export Citation
  • 26

    Turvill JL, Kasapidis P, Farthing MJ. The sigma ligand, igmesine, inhibits cholera toxin and Escherichia coli enterotoxin induced jejunal secretion in the rat. Gut 1999;45:564–569.

    • Search Google Scholar
    • Export Citation
  • 27

    Mourad FH, Nassar CF. Effect of vasoactive intestinal polypeptide (VIP) antagonism on rat jejunal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins. Gut 2000;47:382–386.

    • Search Google Scholar
    • Export Citation
  • 28

    Berberov EM, Zhou Y & Francis DH, et al. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun 2004;72:3914–3924.

    • Search Google Scholar
    • Export Citation
  • 29

    Ruiz MC, Cohen J, Michelangeli F. Role of Ca2+ in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium 2000;28:137–149.

    • Search Google Scholar
    • Export Citation
  • 30

    Reynolds DJ, Hall GA & Debney TG, et al. Pathology of natural rotavirus infection in clinically normal calves. Res Vet Sci 1985;38:264–269.

  • 31

    Halaihel N, Lievin V & Alvarado F, et al. Rotavirus infection impairs intestinal brush-border membrane Na(+)-solute cotransport activities in young rabbits. Am J Physiol Gastrointest Liver Physiol 2000;279:G587–G596.

    • Search Google Scholar
    • Export Citation
  • 32

    Collins J, Starkey WG & Wallis TS, et al. Intestinal enzyme profiles in normal and rotavirus-infected mice. J Pediatr Gastroenterol Nutr 1988;7:264–272.

    • Search Google Scholar
    • Export Citation
  • 33

    Vellenga L, Egberts HJ & Wensing T, et al. Intestinal permeability in pigs during rotavirus infection. Am J Vet Res 1992;53:1180–1183.

  • 34

    Zijlstra RT, Donovan SM & Odle J, et al. Protein-energy malnutrition delays small-intestinal recovery in neonatal pigs infected with rotavirus. J Nutr 1997;127:1118–1127.

    • Search Google Scholar
    • Export Citation
  • 35

    Zijlstra RT, McCracken BA & Odle J, et al. Malnutrition modifies pig small intestinal inflammatory responses to rotavirus. J Nutr 1999;129:838–843.

    • Search Google Scholar
    • Export Citation
  • 36

    Morris AP, Scott JK & Ball JM, et al. NSP4 elicits age-dependent diarrhea and Ca(2+) mediated I(–) influx into intestinal crypts of CF mice. Am J Physiol 1999;277:G431–G444.

    • Search Google Scholar
    • Export Citation
  • 37

    Halaihel N, Lievin V & Ball JM, et al. Direct inhibitory effect of rotavirus NSP4(114-135) peptide on the Na(+)-D-glucose symporter of rabbit intestinal brush border membrane. J Virol 2000;74:9464–9470.

    • Search Google Scholar
    • Export Citation
  • 38

    Desselberger U, Gray J. Viral gastroenteritis. In:Michelangeli F, Ruiz MC, ed.Physiology and pathophysiology of the gut in relation to viral diarrhea. Amsterdam: Elsevier Science BV, 2003;23–50.

    • Search Google Scholar
    • Export Citation
  • 39

    Ball JM, Tian P & Zeng CQ, et al. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 1996;272:101–104.

  • 40

    Iosef C, Chang KO & Azevedo MS, et al. Systemic and intestinal antibody responses to NSP4 enterotoxin of Wa human rotavirus in a gnotobiotic pig model of human rotavirus disease. J Med Virol 2002;68:119–128.

    • Search Google Scholar
    • Export Citation
  • 41

    Morilla A, Arriaga C & Ruiz A, et al. Association between diarrhoea and shedding of group A and atypical groups B to E rotaviruses in suckling pigs. Ann Rech Vet 1991;22:193–200.

    • Search Google Scholar
    • Export Citation
  • 42

    Lundgren O, Peregrin AT & Persson K, et al. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 2000;287:491–495.

    • Search Google Scholar
    • Export Citation
  • 43

    Kordasti S, Sjovall H & Lundgren O, et al. Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea. Gut 2004;53:952–957.

    • Search Google Scholar
    • Export Citation
  • 44

    Tafazoli F, Zeng CQ & Estes MK, et al. NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J Virol 2001;75:1540–1546.

    • Search Google Scholar
    • Export Citation
  • 45

    Morin M, Morehouse LG. Transmissible gastroenteritis in feeder pigs: observations on the jejunal epithelium of normal feeder pigs and feeder pigs infected with TGE virus. Can J Comp Med 1974;38:227–235.

    • Search Google Scholar
    • Export Citation
  • 46

    Homaidan FR, Torres A & Donowitz M, et al. Electrolyte transport in piglets infected with transmissible gastroenteritis virus. Stimulation by verapamil and clonidine. Gastroenterology 1991;101:895–901.

    • Search Google Scholar
    • Export Citation
  • 47

    Rhoads JM, MacLeod RJ, Hamilton JR. Alanine enhances jejunal sodium absorption in the presence of glucose: studies in piglet viral diarrhea. Pediatr Res 1986;20:879–883.

    • Search Google Scholar
    • Export Citation
  • 48

    Vellenga L, Wensing T & Egberts HJ, et al. Intestinal permeability to macromolecules in piglets infected with transmissible gastroenteritis virus. Vet Res Commun 1988;12:481–489.

    • Search Google Scholar
    • Export Citation
  • 49

    Argenzio RA, Whipp SC, Glock RD. Pathophysiology of swine dysentery: colonic transport and permeability studies. J Infect Dis 1980;142:676–684.

    • Search Google Scholar
    • Export Citation
  • 50

    Schmall LM, Argenzio RA, Whipp SC. Pathophysiologic features of swine dysentery: cyclic nucleotide-independent production of diarrhea. Am J Vet Res 1983;44:1309–1316.

    • Search Google Scholar
    • Export Citation
  • 51

    Argenzio RA. Glucose-stimulated fluid absorption in the pig small intestine during the early stage of swine dysentery. Am J Vet Res 1980;41:2000–2006.

    • Search Google Scholar
    • Export Citation
  • 52

    Bland AP, Frost AJ, Lysons RJ. Susceptibility of porcine ileal enterocytes to the cytotoxin of Serpulina hyodysenteriae and the resolution of the epithelial lesions: an electron microscopic study. Vet Pathol 1995;32:24–35.

    • Search Google Scholar
    • Export Citation
  • 53

    Lysons RJ, Kent KA & Bland AP, et al. A cytotoxic haemolysin from Treponema hyodysenteriae—a probable virulence determinant in swine dysentery. J Med Microbiol 1991;34:97–102.

    • Search Google Scholar
    • Export Citation
  • 54

    Whipp SC, Harris DL & Kinyon JM, et al. Enteropathogenicity testing of Treponema hyodysenteriae in ligated colonic loops of swine. Am J Vet Res 1978;39:1293–1296.

    • Search Google Scholar
    • Export Citation
  • 55

    Eustis SL, Nelson DT. Lesions associated with coccidiosis in nursing piglets. Vet Pathol 1981;18:21–28.

  • 56

    Galyov EE, Wood MW & Rosqvist R, et al. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol 1997;25:903–912.

    • Search Google Scholar
    • Export Citation
  • 57

    Yu Y, Zeng H & Lyons S, et al. TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism. Am J Physiol Gastrointest Liver Physiol 2003;285:G282–G290.

    • Search Google Scholar
    • Export Citation
  • 58

    McCormick BA, Parkos CA & Colgan SP, et al. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol 1998;160:455–466.

    • Search Google Scholar
    • Export Citation
  • 59

    Bertelsen LS, Paesold G & Eckmann L, et al. Salmonella infection induces a hypersecretory phenotype in human intestinal xenografts by inducing cyclooxygenase 2. Infect Immun 2003;71:2102–2109.

    • Search Google Scholar
    • Export Citation
  • 60

    Grondahl ML, Jensen GM & Nielsen CG, et al. Secretory pathways in Salmonella Typhimurium-induced fluid accumulation in the porcine small intestine. J Med Microbiol 1998;47:151–157.

    • Search Google Scholar
    • Export Citation
  • 61

    Brunsson I. Enteric nerves mediate the fluid secretory response due to Salmonella typhimurium R5 infection in the rat small intestine. Acta Physiol Scand 1987;131:609–617.

    • Search Google Scholar
    • Export Citation
  • 62

    Tsolis RM, Adams LG & Ficht TA, et al. Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 1999;67:4879–4885.

    • Search Google Scholar
    • Export Citation
  • 63

    Hecht G, Pothoulakis C & LaMont JT, et al. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 1988;82:1516–1524.

    • Search Google Scholar
    • Export Citation
  • 64

    Branka JE, Vallette G & Jarry A, et al. Early functional effects of Clostridium difficile toxin A on human colonocytes. Gastroenterology 1997;112:1887–1894.

    • Search Google Scholar
    • Export Citation
  • 65

    Castagliuolo I, Keates AC & Qiu B, et al. Increased substance P responses in dorsal root ganglia and intestinal macrophages during Clostridium difficile toxin A enteritis in rats. Proc Natl Acad Sci U S A 1997;94:4788–4793.

    • Search Google Scholar
    • Export Citation
  • 66

    Castagliuolo I, Riegler M & Pasha A, et al. Neurokinin-1 (NK-1) receptor is required in Clostridium difficile-induced enteritis. J Clin Invest 1998;101:1547–1550.

    • Search Google Scholar
    • Export Citation
  • 67

    Pothoulakis C, Castagliuolo I & LaMont JT, et al. CP-96,345, a substance P antagonist, inhibits rat intestinal responses to Clostridium difficile toxin A but not cholera toxin. Proc Natl Acad Sci U S A 1994;91:947–951.

    • Search Google Scholar
    • Export Citation
  • 68

    Castagliuolo I, LaMont JT & Letourneau R, et al. Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum. Gastroenterology 1994;107:657–665.

    • Search Google Scholar
    • Export Citation
  • 69

    McOrist S, Lawson GH & Rowland AC, et al. Early lesions of proliferative enteritis in pigs and hamsters. Vet Pathol 1989;26:260–264.

  • 70

    McCluskey J, Hannigan J & Harris JD, et al. LsaA, an antigen involved in cell attachment and invasion, is expressed by Lawsonia intracellularis during infection in vitro and in vivo. Infect Immun 2002;70:2899–2907.

    • Search Google Scholar
    • Export Citation
  • 71

    Love DN, Love RJ. Pathology of proliferative haemorrhagic enteropathy in pigs. Vet Pathol 1979;16:41–48.

  • 72

    Rowland AC, Lawson GH. Intestinal adenomatosis in the pig: a possible relationship with a haemorrhagic enteropathy. Res Vet Sci 1975;18:263–268.

    • Search Google Scholar
    • Export Citation
  • 73

    MacIntyre N, Smith DG & Shaw DJ, et al. Immunopathogenesis of experimentally induced proliferative enteropathy in pigs. Vet Pathol 2003;40:421–432.

    • Search Google Scholar
    • Export Citation
  • 74

    Imberechts H, Bertschinger HU & Nagy B, et al. Fimbrial colonisation factors F18ab and F18ac of Escherichia coli isolated from pigs with postweaning diarrhea and edema disease. Adv Exp Med Biol 1997;412:175–183.

    • Search Google Scholar
    • Export Citation
  • 75

    Waddell TE, Coomber BL, Gyles CL. Localization of potential binding sites for the edema disease verotoxin (VT2e) in pigs. Can J Vet Res 1998;62:81–86.

    • Search Google Scholar
    • Export Citation
  • 76

    Waddell TE, Gyles CL. Sodium deoxycholate facilitates systemic absorption of verotoxin 2e from pig intestine. Infect Immun 1995;63:4953–4956.

    • Search Google Scholar
    • Export Citation
  • 77

    Nabuurs MJ, Van DeWeijgert EJ & Grootendorst AF, et al. Oedema disease is associated with metabolic acidosis and small intestinal acidosis. Res Vet Sci 2001;70:247–253.

    • Search Google Scholar
    • Export Citation
  • 78

    Smith HW, Halls S. The production of oedema disease and diarrhoea in weaned pigs by the oral administration of Escherichia coli: factors that influence the course of the experimental disease. J Med Microbiol 1968;1:45–59.

    • Search Google Scholar
    • Export Citation
  • 79

    Songer JG, Uzal FA. Clostridial enteric infections in pigs. J Vet Diagn Invest 2005;17:528–536.

  • 80

    Springer S, Selbitz HJ. The control of necrotic enteritis in sucking piglets by means of a Clostridium perfringens toxoid vaccine. FEMS Immunol Med Microbiol 1999;24:333–336.

    • Search Google Scholar
    • Export Citation
  • 81

    Rehman H, Awad WA & Lindner I, et al. Clostridium perfringens alpha toxin affects electrophysiological properties of isolated jejunal mucosa of laying hens. Poult Sci 2006;85:1298–1302.

    • Search Google Scholar
    • Export Citation
  • 82

    Bueschel DM, Jost BH & Billington SJ, et al. Prevalence of cpb2, encoding beta2 toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype. Vet Microbiol 2003;94:121–129.

    • Search Google Scholar
    • Export Citation
  • 83

    Waters M, Savoie A & Garmory HS, et al. Genotyping and phenotyping of beta2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. J Clin Microbiol 2003;41:3584–3591.

    • Search Google Scholar
    • Export Citation
  • 84

    Estrada Correa AE, Taylor DJ. Porcine Clostridium perfringens type A spores, enterotoxin and antibody to enterotoxin. Vet Rec 1989;124:606–610.

    • Search Google Scholar
    • Export Citation
  • 85

    Popoff MR, Dodin A. Survey of neuraminidase production by Clostridium butyricum, Clostridium beijerinckii, and Clostridium difficile strains from clinical and nonclinical sources. J Clin Microbiol 1985;22:873–876.

    • Search Google Scholar
    • Export Citation
  • 86

    Jones PH, Roe JM, Miller BG. Effects of stressors on immune parameters and on the faecal shedding of enterotoxigenic Escherichia coli in piglets following experimental inoculation. Res Vet Sci 2001;70:9–17.

    • Search Google Scholar
    • Export Citation
  • 87

    Shimizu M, Shimizu Y, Kodama Y. Effects of ambient temperatures on induction of transmissible gastroenteritis in feeder pigs. Infect Immun 1978;21:747–752.

    • Search Google Scholar
    • Export Citation
  • 88

    Moeser A, VanderKlok C & Ryan K, et al. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am J Physiol Gastrointest Liver Physiol 2007;292:G173–G181.

    • Search Google Scholar
    • Export Citation
  • 89

    Moeser AJ, Almond GW & Baker BB, et al. Does weaning age influence immediate and long-term gastrointestinal health in the pig?, in Proceedings. 37th Ann Meet Am Assoc Swine Vet 2006;29–32.

    • Search Google Scholar
    • Export Citation
  • 90

    Nagy B, Fekete PZ. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol 2005;295:443–454.

  • 91

    Nagy B, Casey TA & Whipp SC, et al. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age. Infect Immun 1992;60:1285–1294.

    • Search Google Scholar
    • Export Citation
  • 92

    Erlwanger KH, Unmack MA & Grondahl ML, et al. Effect of age on vasoactive intestinal polypeptide-induced short-circuit current in porcine jejunum. Comp Biochem Physiol A Mol Integr Physiol 1999;124:29–33.

    • Search Google Scholar
    • Export Citation

Advertisement