Advertisement

Serum immunoglobulin G concentrations in calves fed fresh and frozen colostrum

Nicole M. Holloway MS1, Jeff W. Tyler DVM, PhD, DACVIM2, Jeff Lakritz DVM, PhD, DACVIM3, Steven L. Carlson DVM4, and Julie Holle5
View More View Less
  • 1 Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211.
  • | 2 Department of Veterinary Medicine and Surgery University of Missouri, Columbia, MO 65211.
  • | 3 Department of Veterinary Medicine and Surgery University of Missouri, Columbia, MO 65211.
  • | 4 Bayou Vista Dairy, 4805 Avenue 144, Tipton, CA 93272.
  • | 5 Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211.

Abstract

Objective—To determine whether serum IgG concentrations in neonatal calves are adversely affected by short-term frozen storage of colostrum.

Design—Prospective study.

Sample Population—Experiment 1 consisted of 10 pairs of Holstein calves (n = 20) fed matched aliquots of either fresh (n = 10) or frozen and thawed (10) colostrum. In experiment 2, 26 Holstein calves were fed either fresh (n = 13) or frozen and thawed (n = 13) colostrum.

Procedure—Experiment 1 consisted of calves resulting from observed parturitions; calves were randomly assigned to treatment groups (fresh or frozen and thawed colostrum) in pairs. Calves were fed 4 L aliquots of colostrum via oroesophageal intubation at 3 hours of age. Serum IgG concentrations at 2 days of age were compared between the 2 groups by use of a paired t-test. Experiment 2 consisted of calves resulting from observed parturitions; calves were randomly assigned to treatment groups (fresh or frozen and thawed colostrum). Calves were fed 4 L aliquots of colostrum via oroesophageal intubation at 3 hours of age. Regression analysis was used to determine whether calf serum IgG concentration was a function of colostral IgG concentration and colostrum storage group.

Results—Significant differences were not observed between the 2 groups in experiment 1. No significant relationship was observed between colostrum storage group and serum IgG concentration in experiment 2. The model that best predicted serum IgG concentrations accounted for 20% of the variability in serum IgG concentration.

Conclusion and Clinical Relevance—Frozen colostrum is an adequate source of IgG for calves. (J Am Vet Med Assoc 2001;219:357–359)

Abstract

Objective—To determine whether serum IgG concentrations in neonatal calves are adversely affected by short-term frozen storage of colostrum.

Design—Prospective study.

Sample Population—Experiment 1 consisted of 10 pairs of Holstein calves (n = 20) fed matched aliquots of either fresh (n = 10) or frozen and thawed (10) colostrum. In experiment 2, 26 Holstein calves were fed either fresh (n = 13) or frozen and thawed (n = 13) colostrum.

Procedure—Experiment 1 consisted of calves resulting from observed parturitions; calves were randomly assigned to treatment groups (fresh or frozen and thawed colostrum) in pairs. Calves were fed 4 L aliquots of colostrum via oroesophageal intubation at 3 hours of age. Serum IgG concentrations at 2 days of age were compared between the 2 groups by use of a paired t-test. Experiment 2 consisted of calves resulting from observed parturitions; calves were randomly assigned to treatment groups (fresh or frozen and thawed colostrum). Calves were fed 4 L aliquots of colostrum via oroesophageal intubation at 3 hours of age. Regression analysis was used to determine whether calf serum IgG concentration was a function of colostral IgG concentration and colostrum storage group.

Results—Significant differences were not observed between the 2 groups in experiment 1. No significant relationship was observed between colostrum storage group and serum IgG concentration in experiment 2. The model that best predicted serum IgG concentrations accounted for 20% of the variability in serum IgG concentration.

Conclusion and Clinical Relevance—Frozen colostrum is an adequate source of IgG for calves. (J Am Vet Med Assoc 2001;219:357–359)