• 1.

    Riebold TW. Ruminants. In: Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson SA, eds. Veterinary Anesthesia and Analgesia. 5th ed. John Wiley & Sons Inc; 2015:912927.

    • Search Google Scholar
    • Export Citation
  • 2.

    Eger EI II, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology. 1965;26(6):756763. doi: 10.1097/00000542-196511000-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Roizen MF, Horrigan RW, Frazer BM. Anesthetic doses blocking adrenergic (stress) and cardiovascular responses to incision–MAC BAR. Anesthesiology. 1981;54(5):390398. doi: 10.1097/00000542-198105000-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Albertin A, Casati A, Bergonzi P, Fano G, Torri G. Effects of two target-controlled concentrations (1 and 3 ng/ml) of remifentanil on MAC(BAR) of sevoflurane. Anesthesiology. 2004;100(2):255259. doi: 10.1097/00000542-200402000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Katoh T, Kobayashi S, Suzuki A, Iwamoto T, Bito H, Ikeda K. The effect of fentanyl on sevoflurane requirements for somatic and sympathetic responses to surgical incision. Anesthesiology. 1999;90(2):398405. doi: 10.1097/00000542-199902000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Love L, Egger C, Rohrbach B, Cox S, Hobbs M, Doherty T. The effect of ketamine on the MACBAR of sevoflurane in dogs. Vet Anaesth Analg. 2011;38(4):292300. doi: 10.1111/j.1467-2995.2011.00616.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Wilson J, Doherty TJ, Egger CM, Fidler A, Cox S, Rohrbach B. Effects of intravenous lidocaine, ketamine, and the combination on the minimum alveolar concentration of sevoflurane in dogs. Vet Anaesth Analg. 2008;35(4):289296. doi: 10.1111/j.1467-2995.2007.00389.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Columbano N, Scanu A, Duffee L, Melosu V, Sotgiu G, Driessen B. Determination of the minimum alveolar concentration (MAC) and cardiopulmonary effects of sevoflurane in sheep. Vet Anaesth Analg. 2018;45(4):487495. doi: 10.1016/j.vaa.2018.01.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Okutomi T, Whittington RA, Stein DJ, Morishima HO. Comparison of the effects of sevoflurane and isoflurane anesthesia on the maternal-fetal unit in sheep. J Anesth. 2009;23(3):392398. doi: 10.1007/s00540-009-0763-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Barletta M, Quandt JE, Reed RA, Hofmeister EH, Messenger KM. Determination of the minimum alveolar concentration of sevoflurane that blunts adrenergic responses and the effect of a constant rate infusion of ketamine in sheep. Res Vet Sci. 2020;128:230235. doi: 10.1016/j.rvsc.2019.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Posner LP, Burns P. Injectable anesthetic agents. In: Riviere JE, Papich MG, eds. Veterinary Pharmacology and Therapeutics. 9th ed. Wiley-Blackwell; 2009:265299.

    • Search Google Scholar
    • Export Citation
  • 12.

    Annetta MG, Iemma D, Garisto C, Tafani C, Proietti R. Ketamine: new indications for an old drug. Curr Drug Targets. 2005;6(7):789794. doi: 10.2174/138945005774574533

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Muir WW III, Wiese AJ, March PA. Effects of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine drug combination on minimum alveolar concentration in dogs anesthetized with isoflurane. Am J Vet Res. 2003;64(9):11551160. doi: 10.2460/ajvr.2003.64.1155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Solano AM, Pypendop BH, Boscan PL, Ilkiw JE. Effect of intravenous administration of ketamine on the minimum alveolar concentration of isoflurane in anesthetized dogs. Am J Vet Res. 2006;67(1):2125. doi: 10.2460/ajvr.67.1.21

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Pypendop BH, Solano A, Boscan P, Ilkiw JE. Characteristics of the relationship between plasma ketamine concentration and its effect on the minimum alveolar concentration of isoflurane in dogs. Vet Anaesth Analg. 2007;34(3):209212. doi: 10.1111/j.1467-2995.2006.00324.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Pascoe PJ, Ilkiw JE, Craig C, Kollias-Baker C. The effects of ketamine on the minimum alveolar concentration of isoflurane in cats. Vet Anaesth Analg. 2007;34(1):3139. doi: 10.1111/j.1467-2995.2006.00297.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Doherty T, Redua MA, Queiroz-Castro P, Egger C, Cox SK, Rohrbach BW. Effect of intravenous lidocaine and ketamine on the minimum alveolar concentration of isoflurane in goats. Vet Anaesth Analg. 2007;34(2):125131. doi: 10.1111/j.1467-2995.2006.00301.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Raske TG, Pelkey S, Wagner AE, Turner AS. Effect of intravenous ketamine and lidocaine on isoflurane requirement in sheep undergoing orthopedic surgery. Lab Anim (NY). 2010;39(3):7679. doi: 10.1038/laban0310-76

    • Search Google Scholar
    • Export Citation
  • 19.

    Pöppel N, Hopster K, Geburek F, Kastner S. Influence of ketamine or xylazine supplementation on isoflurane anaesthetized horses—a controlled clinical trial. Vet Anaesth Analg. 2015;42(1):3038. doi: 10.1111/vaa.12176

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Docquier MA, Lavand’homme P, Boulanger V, Collet V, De Kock M. Questioning the cardiocirculatory excitatory effects of opioids under volatile anaesthesia. Br J Anaesth. 2004;93(3):408413. doi: 10.1093/bja/aeh216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Diaz FA, Bianco JA, Bello A, et al. Effects of ketamine on canine cardiovascular function. Br J Anaesth. 1976;48(10):941946. doi: 10.1093/bja/48.10.941

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wong DH, Jenkins LC. An experimental study of the mechanism of action of ketamine on the central nervous system. Can Anaesth Soc J. 1974;21(1):5767. doi: 10.1007/BF03004579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Haskins SC, Farver TB, Patz JD. Ketamine in dogs. Am J Vet Res. 1985;46(9):18551860.

  • 24.

    Proctor LT, Schmeling WT, Warltier DC. Premedication with oral dexmedetomidine alters hemodynamic actions of intravenous anesthetic agents in chronically instrumented dogs. Anesthesiology. 1992;77(3):554562. doi: 10.1097/00000542-199209000-00023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kamp J, van Velzen M, Aarts L, Niesters M, Dahan A, Olofsen E. Stereoselective ketamine effect on cardiac output: a population pharmacokinetic/pharmacodynamic modelling study in healthy volunteers. Br J Anaesth. 2021;127(1):2331. doi: 10.1016/j.bja.2021.02.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Idvall J, Aronsen KF, Stenberg P. Tissue perfusion and distribution of cardiac output during ketamine anesthesia in normovolemic rats. Acta Anaesthesiol Scand. 1980;24(3):257263. doi: 10.1111/j.1399-6576.1980.tb01546.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Tuchschmidt J, Fried J, Astiz M, Rackow E. Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest. 1992;102(1):216220. doi: 10.1378/chest.102.1.216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ryan T, Page R, Bouchier-Hayes D, Cunningham AJ. Transoesophageal pulsed wave Doppler measurement of cardiac output during major vascular surgery: comparison with the thermodilution technique. Br J Anaesth. 1992;69(1):101104. doi: 10.1093/bja/69.1.101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Jaffe MB. Partial CO2 rebreathing cardiac output—operating principles of the NICO system. J Clin Monit Comput. 1999;15(6):387401. doi: 10.1023/a:1009981313076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH. Development and evaluation of an impedance cardiac output system. Aerosp Med. 1966;37(12):12081212.

    • Search Google Scholar
    • Export Citation
  • 31.

    Haryadi DG, Orr JA, Kuck K, McJames S, Westenskow DR. Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput. 2000;16(5-6):361374. doi: 10.1023/a:1011403717822

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Gunkel CI, Valverde A, Morey TE, Hernández J, Robertson SA. Comparison of non-invasive cardiac output measurement by partial carbon dioxide rebreathing with the lithium dilution method in anesthetized dogs. J Vet Emerg Crit Care (San Antonio). 2004;14(3):187195. doi: 10.1111/j.1534–6935.2004.04017.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Valverde A, Giguère S, Morey TE, Sanchez LC, Shih A. Comparison of noninvasive cardiac output measured by use of partial carbon dioxide rebreathing or the lithium dilution method in anesthetized foals. Am J Vet Res. 2007;68(2):141147. doi: 10.2460/ajvr.68.2.141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Gedeon A, Krill P, Kristensen J, Gottlieb I. Noninvasive cardiac output determined with a new method based on gas exchange measurements and carbon dioxide rebreathing: a study in animals/pigs. J Clin Monit. 1992;8(4):267278. doi: 10.1007/BF01617908

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Barletta M, Kleine SA, Hofmeister EH, et al. Determination of the minimum alveolar concentration of isoflurane that blunts adrenergic responses in sheep and evaluation of the effects of fentanyl. Am J Vet Res. 2016;77(2):119126. doi: 10.2460/ajvr.77.2.119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Rodrigo Simão B, Campos Maia AS, André Castro PA, Bernado Moura GA, de França Carvalho Fonsêca V. Estimation of the body surface area and its impact on the heat transfer by convection in sheep: a computational way. BBIOMET. 2017;2017:15. doi: 10.6084/m9.figshare.5176492

    • Search Google Scholar
    • Export Citation
  • 37.

    Bidwai AV, Stanley HT, Graves CL, Kawamura R, Sentker CR. The effects of ketamine on cardiovascular dynamics during halothane and enflurane anesthesia. Anesth Analg. 1975;54(5):588592. doi: 10.1213/00000539-197509000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ko JC, Barletta M, Sen I, et al. Influence of ketamine on the cardiopulmonary effects of intramuscular administration of dexmedetomidine-buprenorphine with subsequent reversal with atipamezole in dogs. J Am Vet Med Assoc. 2013;242(3):339345. doi: 10.2460/javma.242.3.339

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Ivankovich AD, Miletich DJ, Reimann C, Albrecht RF, Zahed B. Cardiovascular effects of centrally administered ketamine in goats. Anesth Analg. 1974;53(6):924933. doi: 10.1213/00000539-197453060-00022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Kotake Y, Moriyama K, Innami Y, et al. Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery. Anesthesiology. 2003;99(2):283288. doi: 10.1097/00000542-200308000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Vigani A. Cardiac output measurement. In: Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson SA, eds. Veterinary Anesthesia and Analgesia. 5th ed. John Wiley & Sons Inc; 2015:473482.

    • Search Google Scholar
    • Export Citation
  • 42.

    Stowe CM, Good AL. Estimation of cardiac output in calves and sheep by the dye and Fick oxygen techniques. Am J Physiol. 1960;198:987990. doi: 10.1152/ajplegacy.1960.198.5.987

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hamlin RL, Smith CR. Cardiac output in healthy, anesthetized sheep. Am J Vet Res. 1962;23:711713.

  • 44.

    Axiak Flammer SM, Critchley LA, Weber A, Pirbodaghi T, Brinks H, Vandenberghe S. Reliability of lithium dilution cardiac output in anaesthetized sheep. Br J Anaesth. 2013;111(5):833839. doi: 10.1093/bja/aet220

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Waterman A, Livingston A. Some physiological effects of ketamine in sheep. Res Vet Sci. 1978;25(2):225233.

  • 46.

    Leung LY, Baillie TA. Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine. J Med Chem. 1986;29(11):23962399. doi: 10.1021/jm00161a043

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

The effect of a ketamine constant rate infusion on cardiovascular variables in sheep anesthetized at the minimum alveolar concentration of sevoflurane that blunts adrenergic responses

View More View Less
  • 1 Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
  • | 2 Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA
  • | 3 Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC

Abstract

OBJECTIVE

To evaluate the effect of a constant rate infusion of ketamine on cardiac index (CI) in sheep, as estimated using noninvasive cardiac output (NICO) monitoring by partial carbon dioxide rebreathing, when anesthetized with sevoflurane at the previously determined minimum alveolar concentration that blunts adrenergic responses (MACBAR).

ANIMALS

12 healthy Dorset-crossbred adult sheep.

PROCEDURES

Sheep were anesthetized 2 times in a balanced placebo-controlled crossover design. Anesthesia was induced with sevoflurane delivered via a tight-fitting face mask and maintained at MACBAR. Following induction, sheep received either ketamine (1.5 mg/kg IV, followed by a constant rate infusion of 1.5 mg/kg/h) or an equivalent volume of saline (0.9% NaCl) solution (placebo). After an 8-day washout period, each sheep received the alternate treatment. NICO measurements were performed in triplicate 20 minutes after treatment administration and were converted to CI. Blood samples were collected prior to the start of NICO measurements for analysis of ketamine plasma concentrations. The paired t test was used to compare CI values between groups and the ketamine plasma concentrations with those achieved during the previous study.

RESULTS

Mean ± SD CI of the ketamine and placebo treatments were 2.69 ± 0.65 and 2.57 ± 0.53 L/min/m2, respectively. No significant difference was found between the 2 treatments. Mean ketamine plasma concentration achieved prior to the NICO measurement was 1.37 ± 0.58 µg/mL, with no significant difference observed between the current and prior study.

CLINICAL RELEVANCE

Ketamine, at the dose administered, did not significantly increase the CI in sheep when determined by partial carbon dioxide rebreathing.

Abstract

OBJECTIVE

To evaluate the effect of a constant rate infusion of ketamine on cardiac index (CI) in sheep, as estimated using noninvasive cardiac output (NICO) monitoring by partial carbon dioxide rebreathing, when anesthetized with sevoflurane at the previously determined minimum alveolar concentration that blunts adrenergic responses (MACBAR).

ANIMALS

12 healthy Dorset-crossbred adult sheep.

PROCEDURES

Sheep were anesthetized 2 times in a balanced placebo-controlled crossover design. Anesthesia was induced with sevoflurane delivered via a tight-fitting face mask and maintained at MACBAR. Following induction, sheep received either ketamine (1.5 mg/kg IV, followed by a constant rate infusion of 1.5 mg/kg/h) or an equivalent volume of saline (0.9% NaCl) solution (placebo). After an 8-day washout period, each sheep received the alternate treatment. NICO measurements were performed in triplicate 20 minutes after treatment administration and were converted to CI. Blood samples were collected prior to the start of NICO measurements for analysis of ketamine plasma concentrations. The paired t test was used to compare CI values between groups and the ketamine plasma concentrations with those achieved during the previous study.

RESULTS

Mean ± SD CI of the ketamine and placebo treatments were 2.69 ± 0.65 and 2.57 ± 0.53 L/min/m2, respectively. No significant difference was found between the 2 treatments. Mean ketamine plasma concentration achieved prior to the NICO measurement was 1.37 ± 0.58 µg/mL, with no significant difference observed between the current and prior study.

CLINICAL RELEVANCE

Ketamine, at the dose administered, did not significantly increase the CI in sheep when determined by partial carbon dioxide rebreathing.

Contributor Notes

Corresponding author: Dr. Barletta (mbarlett@uga.edu)