• 1.

    Holmberg BJ, Maggs DJ. The use of corticosteroids to treat ocular inflammation. Vet Clin North Am Small Anim Pract. 2004;34(3):693705. doi:10.1016/j.cvsm.2003.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Sulaiman RS, Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in the eye. Steroids. 2018;133:6066. doi:10.1016/j.steroids.2017.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    McGhee CNJ. Pharmacokinetics of ophthalmic corticosteroids. Br J Ophthalmol. 1992;76(11):681684. doi:10.1136/bjo.76.11.681

  • 4.

    Sebbag L, Allbaugh RA, Wehrman RF, et al. Fluorophotometric assessment of tear volume and turnover rate in healthy dogs and cats. J Ocul Pharmacol Ther. 2019;35(9):497502. doi:10.1089/jop.2019.0038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Krishna N. Rate of lacrimal excretion of ophthalmic vehicles. Am J Ophthalmol. 1968;65(6):942944. doi:10.1016/0002-9394(68)92234-4

  • 6.

    Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985;26(4):584587.

    • Search Google Scholar
    • Export Citation
  • 7.

    Schoenwald RD, Deshpande GS, Rethwisch DG, Barfknecht CF. Penetration into the anterior chamber via the conjunctival/scleral pathway. J Ocul Pharmacol Ther. 1997;13(1):4159. doi:10.1089/jop.1997.13.41

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Burstein NL, Anderson JA. Corneal penetration and ocular bioavailability of drugs. J Ocul Pharmacol. 1985;1(3):309326. doi:10.1089/jop.1985.1.309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Farkouh A, Frigo P, Czejka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Ophthalmol. 2016;10:24332441. doi:10.2147/OPTH.S118409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ramsay E, del Amo EM, Toropainen E, et al. Corneal and conjunctival drug permeability: systematic comparison and pharmacokinetic impact in the eye. Eur J Pharm Sci. 2018;119:8389. doi:10.1016/j.ejps.2018.03.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Anderson JA. Systemic absorption of topical ocularly applied epinephrine and dipivefrin. Arch Ophthalmol. 1980;98(2):350353. doi:10.1001/archopht.1980.01020030346024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ohman L, Edqvist L-E, Johnansson EB. Absorption of topically applied hydrocortisone from the eye of the rhesus monkey. Acta Ophthalmol (Copenh). 1982;60(1):106112. doi:10.1111/j.1755-3768.1982.tb05786.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Lanuza R, Rankin AJ, KuKanich B, Meekins JM. Evaluation of systemic absorption and renal effects of topical ophthalmic flurbiprofen and diclofenac in healthy cats. Vet Ophthalmol. 2016;19:2429. doi:10.1111/vop.12295

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hsu KK, Pinard CL, Johnson RJ, Allen DG, Kukanich BK, Nykamp SG. Systemic absorption and adverse ocular and systemic effects after topical ophthalmic administration of 0.1% diclofenac to healthy cats. Am J Vet Res. 2015;76(3):253265. doi:10.2460/ajvr.76.3.253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Griggs AN, Yaw TJ, Haynes JS, Ben-Shlomo G, Tofflemire KL, Allbaugh RA. Bioavailability and biochemical effects of diclofenac sodium 0.1% ophthalmic solution in the domestic chicken (Gallus gallus domesticus). Vet Ophthalmol. 2017;20(2):171176. doi:10.1111/vop.12387

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Vaajanen A, Vapaatalo H. A single drop in the eye—effects on the whole body? Open Ophthalmol J. 2017;11(1):305314. doi:10.2174/1874364101711010305

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol. 1993;37(6):435456. doi:10.1016/0039-6257(93)90141-s

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Sebbag L, Kirner NS, Allbaugh RA, Reis A, Mochel JP. Kinetics of fluorescein in tear film after eye drop instillation in Beagle dogs: does size really matter? Front Vet Sci. 2019;6:457. doi:10.3389/fvets.2019.00457

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Sebbag L, Kirner NS, Wulf LW, Mochel JP. Tear film pharmacokinetics and systemic absorption following topical administration of 1% prednisolone acetate ophthalmic suspension in dogs. Front Vet Sci. 2020;7:571350. doi:10.3389/fvets.2020.571350

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Spiess BM, Nyikos S, Stummer E, Sahin A, Naegeli H. Systemic dexamethasone concentration in horses after continued topical treatment with an ophthalmic preparation of dexamethasone. Am J Vet Res. 1999;60(5):571576.

    • Search Google Scholar
    • Export Citation
  • 21.

    Janes RG, Stiles JF. The penetration of cortisol into normal and pathologic rabbit eyes. Am J Ophthalmol. 1963;56(1):8490. doi:10.1016/0002–9394(63)91306–0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Sigurdsson HH, Konrádsdóttir F, Loftsson T, Stefánsson E. Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye. Acta Ophthalmol Scand. 2007;85(6):598602. doi:10.1111/j.1600-0420.2007.00885.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Weijtens O, Schoemaker RC, Romijn FPHTM, Cohen AF, Lentjes EGWM, van Meurs JC. Intraocular penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmology. 2002;109(10):18871891. doi:10.1016/s0161-6420(02)01176-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Steelman J, Kappy M. Adrenal suppression and growth retardation from ocular corticosteroids. J Pediatr Ophthalmol Strabismus. 2001;38(3):177178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Baba S, Mishima H, Okimoto M, Miyachi Y. Plasma steroid levels and clinical effects after topical application of betamethasone. Graefes Arch Clin Exp Ophthalmol. 1983;220(5):209214. doi:10.1007/BF02308076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Bahar I, Rosenblat I, Erenberg M, et al. Effect of dexamethasone eyedrops on blood glucose profile. Curr Eye Res. 2007;32(9):739742. doi:10.1080/02713680701573704

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Murphy CJ, Feldman EC, Bellhorn R. Iatrogenic Cushing’s syndrome in a dog caused by topical ophthalmic medications. J Am Anim Hosp Assoc. 1990;26:640642.

    • Search Google Scholar
    • Export Citation
  • 28.

    Sohlberg E, Halldin MM, Annas A, et al. The impact of the site of blood sampling on pharmacokinetic parameters following sublingual dosing to dogs. J Pharmacol Toxicol Methods. 2013;67(1):14. doi:10.1016/j.vascn.2012.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Hedges AR, Pypendop BH, Shilo Y, Stanley SD, Ilkiw JE. Impact of the blood sampling site on time-concentration drug profiles following intravenous or buccal drug administration. J Vet Pharmacol Ther. 2014;37(2):145150. doi:10.1111/jvp.12075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Messenger KM, Davis JL, Lafevers DH, Barlow BM, Posner LP. Intravenous and sublingual buprenorphine in horses: pharmacokinetics and influence of sampling site. Vet Anaesth Analg. 2011;38(4):374384. doi:10.1111/j.1467-2995.2011.00613.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hermanson JW, de Lahunta A, Evans HE. The veins. In: Hermanson JW, de Lahunta A, Evans HE, eds. Miller and Evans’ Anatomy of the Dog. 5th ed. Elsevier; 2020:11701227.

    • Search Google Scholar
    • Export Citation
  • 32.

    Van der Heyden S, Croubels S, Gadeyne C, et al. Influence of P-glycoprotein modulation on plasma concentrations and pharmacokinetics of orally administered prednisolone in dogs. Am J Vet Res. 2012;73(6):900907. doi:10.2460/ajvr.73.6.900

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Stringer W, Bryant R. Dose uniformity of topical corticosteroid preparations: difluprednate ophthalmic emulsion 0.05% versus branded and generic prednisolone acetate ophthalmic suspension 1%. Clin Ophthalmol. 2010;4(1):11191124. doi:10.2147/OPTH.S12441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Marlowe ZT, Davio SR. Dose uniformity of loteprednol etabonate ophthalmic gel (0.5%) compared with branded and generic prednisolone acetate ophthalmic suspension (1%). Clin Ophthalmol. 2014;8:2329. doi:10.2147/OPTH.S55004

    • Search Google Scholar
    • Export Citation
  • 35.

    Nam A, Kim SM, Jeong JW, Song KH, Koo TS, Seo KW. Comparison of body surface area-based and weight-based dosing format for oral prednisolone administration in small and large-breed dogs. Pol J Vet Sci. 2017;20(3):611613. doi:10.1515/pjvs-2017-0076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Ekstrand C, Pettersson H, Gehring R, Hedeland M, Adolfsson S, Lilliehöök I. Prednisolone in dogs—plasma exposure and white blood cell response. Front Vet Sci. 2021;8:666219. doi:10.3389/fvets.2021.666219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Blois S, Mathews KA. Anti-inflammatory therapy. In: Ettinger SJ, Feldman EC, Côté E, eds. Textbook of Veterinary Internal Medicine: Diseases of the Dog and Cat. 8th ed. Elsevier; 2017:17821793.

    • Search Google Scholar
    • Export Citation
  • 38.

    Greco DS, Brown SA, Gauze JJ, Weise DW, Buck JM. Dexamethasone pharmacokinetics in clinically normal dogs during low- and high-dose dexamethasone suppression testing. Am J Vet Res. 1993;54(4):580585.

    • Search Google Scholar
    • Export Citation
  • 39.

    Toutain PL, Alvinerie M, Ruckebusch Y. Pharmacokinetics of dexamethasone and its effect on adrenal gland function in the dog. Am J Vet Res. 1983;44(2):212217.

    • Search Google Scholar
    • Export Citation
  • 40.

    Quantz KR, Anderson A, Harman CD, et al. Localized alopecia and suppression of hypothalamic pituitary adrenal axis in canines following treatment with difluprednate 0.05% ophthalmic emulsion (Durezol®). In: Proceedings of the ACVO 51st Annual Conference & Trade Show. American College of Veterinary Ophthalmologists; 2020:60.

    • Search Google Scholar
    • Export Citation
  • 41.

    Eichenbaum JD, Macy DW, Severin GA, Paulsen ME. Effect in large dogs of ophthalmic prednisolone acetate on adrenal gland and hepatic function. J Am Anim Hosp Assoc. 1988;24(6):705709.

    • Search Google Scholar
    • Export Citation
  • 42.

    Roberts SM, Lavach JD, Macy DW, Severin GA. Effect of ophthalmic prednisolone acetate on the canine adrenal gland and hepatic function. Am J Vet Res. 1984;45(9):17111714.

    • Search Google Scholar
    • Export Citation
  • 43.

    Glaze MB, Crawford MA, Nachreiner RF, Casey HW, Nafe LA, Kearney MT. Ophthalmic corticosteroid therapy: systemic effects in the dog. J Am Vet Med Assoc. 1988;192(1):7375.

    • Search Google Scholar
    • Export Citation
  • 44.

    Fukuhara D, Takiura T, Keino H, Okada AA, Yan K. Iatrogenic Cushing’s syndrome due to topical ocular glucocorticoid treatment. Pediatrics. 2017;139(2):e20161233.doi:10.1542/peds.2016-1233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Ozerdem U, Levi L, Cheng L, et al. Systemic toxicity of topical and periocular corticosteroid therapy in an 11-year-old male with posterior uveitis. Am J Ophthalmol. 2000;130(2):240241. doi:10.1016/s0002-9394(00)00501-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Rankin AJ, Kukanich KS, Schermerhorn T, et al. Evaluation of diabetes mellitus regulation in dogs treated with ophthalmic preparations of prednisolone acetate versus diclofenac sodium. Am J Vet Res. 2019;80(12):11291135. doi:10.2460/ajvr.80.12.1129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Kymionis GD, Panagiotoglou T, Tsilimbaris MK. The effect of intense, short-term topical dexamethasone disodium phosphate eyedrops on blood glucose level in diabetic patients. Ophthalmologica. 2007;221(6):426429. doi:10.1159/000107505

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Krupin T, Mandell AI, Podos SM, Becker B. Topical corticosteroid therapy and pituitary-adrenal function. Arch Ophthalmol. 1976;94(6):919920. doi:10.1001/archopht.1976.03910030459003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Gold AJ, Langlois DK, Refsal KR. Evaluation of basal serum or plasma cortisol concentrations for the diagnosis of hypoadrenocorticism in dogs. J Vet Intern Med. 2016;30(6):17981805. doi:10.1111/jvim.14589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Sebbag L, Soler EA, Allbaugh RA, Mochel JP. Impact of acute conjunctivitis on ocular surface homeostasis in dogs. Vet Ophthalmol. 2020;23(5):828833. doi:10.1111/vop.12804

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Sebbag L, Moody LM, Mochel JP. Albumin levels in tear film modulate the bioavailability of medically-relevant topical drugs. Front Pharmacol. 2020;10:1560. doi:10.3389/fphar.2019.01560

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Sebbag L, Allbaugh RA, Weaver A, Seo YJ, Mochel JP. Histamine-Induced Conjunctivitis and breakdown of blood–tear barrier in dogs: a model for ocular pharmacology and therapeutics. Front Pharmacol. 2019;10:752. doi:10.3389/fphar.2019.00752

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Page L, Allbaugh RA, Mochel JP, Peraza J, Bertram M, Sebbag L. Impact of diurnal variation, sex, tear collection method, and disease state on tear protein levels in dogs. Vet Ophthalmol. 2020;23(6):9941000. doi:10.1111/vop.12840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Schlaghecke R, Kornely E, Santen RT, Ridderskamp P. The effect of long-term glucocorticoid therapy on pituitary-adrenal responses to exogenous corticotropin-releasing hormone. N Engl J Med. 1992;326(4):226230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Spencer KB, Thompson FN, Clekis T, Lorenz MD. Adrenal gland function in dogs given methylprednisolone. Am J Vet Res. 1980;41(9):15031506.

    • Search Google Scholar
    • Export Citation
  • 56.

    Johnston SD, Mather EC. Canine plasma cortisol (hydrocortisone) measured by radioimmunoassay: clinical absence of diurnal variation and results of ACTH stimulation and dexamethasone suppression tests. Am J Vet Res. 1978;39(11):17661770.

    • Search Google Scholar
    • Export Citation
  • 57.

    Richkind M, Edqvist LE. Peripheral plasma levels of corticosteroids in normal Beagles and Greyhounds measured by a rapid competitive protein binding technique. Acta Vet Scand. 1973;14(5):745757. doi:10.1186/BF03547402

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Becker MJ, Helland D, Becker D. Serum cortisol (hydrocortisone) values in normal dogs as determined by radioimmunoassay. Am J Vet Res. 1976;37:11011102.

    • Search Google Scholar
    • Export Citation
  • 59.

    Chen CL, Kumar M, Willard M, Liao T. Serum hydrocortisone (cortisol) values in normal and adrenopathic dogs as determined by radioimmunoassay. Am J Vet Res. 1978;39(1):179181.

    • Search Google Scholar
    • Export Citation
  • 60.

    Kemppainen RJ, Sartin JL. Evidence for episodic but not circadian activity in plasma concentrations of adrenocorticotrophin, cortisol and thyroxine in dogs. J Endocrinol. 1984;103(2):219226. doi:10.1677/joe.0.1030219

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Prednisolone and dexamethasone are systemically absorbed after topical application of ophthalmic suspensions in healthy dogs

View More View Less
  • 1 Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS
  • | 2 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS

Abstract

OBJECTIVE

To quantify plasma concentrations of prednisolone and dexamethasone (peripheral and jugular) and cortisol following topical ophthalmic application of 1% prednisolone acetate and 0.1% dexamethasone to healthy adult dogs.

ANIMALS

12 purpose-bred Beagles.

PROCEDURES

Dogs received 1 drop of 1% prednisolone acetate (n = 6) or neomycin polymyxin B dexamethasone (ie, 0.1% dexamethasone; 6) ophthalmic suspension in both eyes every 6 hours for 14 days. Blood samples (peripheral and jugular) were collected on days 0, 1, 7, and 14 and analyzed for plasma prednisolone and dexamethasone concentrations. Plasma cortisol concentrations were measured at the beginning of the study and following topical drug administration.

RESULTS

Both drugs demonstrated systemic absorption. Prednisolone was detected on days 1, 7, and 14 (median plasma concentration, 24.80 ng/mL; range, 6.20 to 74.00 ng/mL), and dexamethasone was detected on days 1, 7, and 14 (2.30 ng/mL; 0 to 17.70 ng/mL). Neither prednisolone nor dexamethasone were detected in plasma samples on day 0 (baseline). Sampling from the jugular vein resulted in higher plasma drug concentrations than from a peripheral vein when samples from each day were combined. Plasma cortisol concentrations were significantly lower than baseline following 14 days of treatment with topical prednisolone acetate and dexamethasone.

CLINICAL RELEVANCE

Prednisolone and dexamethasone are detected in the plasma of healthy dogs following topical ophthalmic administration 4 times/d with prednisolone concentrations being close to a physiologic dose of orally administered prednisolone. Additional research is needed to evaluate the systemic absorption of these medications in dogs with ocular inflammation.

Abstract

OBJECTIVE

To quantify plasma concentrations of prednisolone and dexamethasone (peripheral and jugular) and cortisol following topical ophthalmic application of 1% prednisolone acetate and 0.1% dexamethasone to healthy adult dogs.

ANIMALS

12 purpose-bred Beagles.

PROCEDURES

Dogs received 1 drop of 1% prednisolone acetate (n = 6) or neomycin polymyxin B dexamethasone (ie, 0.1% dexamethasone; 6) ophthalmic suspension in both eyes every 6 hours for 14 days. Blood samples (peripheral and jugular) were collected on days 0, 1, 7, and 14 and analyzed for plasma prednisolone and dexamethasone concentrations. Plasma cortisol concentrations were measured at the beginning of the study and following topical drug administration.

RESULTS

Both drugs demonstrated systemic absorption. Prednisolone was detected on days 1, 7, and 14 (median plasma concentration, 24.80 ng/mL; range, 6.20 to 74.00 ng/mL), and dexamethasone was detected on days 1, 7, and 14 (2.30 ng/mL; 0 to 17.70 ng/mL). Neither prednisolone nor dexamethasone were detected in plasma samples on day 0 (baseline). Sampling from the jugular vein resulted in higher plasma drug concentrations than from a peripheral vein when samples from each day were combined. Plasma cortisol concentrations were significantly lower than baseline following 14 days of treatment with topical prednisolone acetate and dexamethasone.

CLINICAL RELEVANCE

Prednisolone and dexamethasone are detected in the plasma of healthy dogs following topical ophthalmic administration 4 times/d with prednisolone concentrations being close to a physiologic dose of orally administered prednisolone. Additional research is needed to evaluate the systemic absorption of these medications in dogs with ocular inflammation.

Supplementary Materials

    • Supplementary Figure S1 (PDF 197 KB)
    • Supplementary Table S1 (PDF 124 KB)

Contributor Notes

Corresponding author: Dr. Ewald (mmeglens@gmail.com)