• 1.

    Zaura E, Nicu EA, Krom BP, Keijser BJF. Acquiring and maintaining a normal oral microbiome: current perspective. Front Cell Infect Microbiol. 2014;4:85. doi:10.3389/fcimb.2014.00085

    • Search Google Scholar
    • Export Citation
  • 2.

    Davis EM. Gene sequence analyses of the healthy oral microbiome in humans and companion animals: a comparative review. J Vet Dent. 2016;33(2):97107.

    • Search Google Scholar
    • Export Citation
  • 3.

    Kilian M. The oral microbiome – friend or foe? Eur J Oral Sci. 2018;126(suppl 1):512.

  • 4.

    Ruparell A, Inui T, Staunton R, Wallis C, Deusch O, Holcombe LJ. The canine oral microbiome: variation in bacterial populations across different niches. BMC Microbiol. 2020;20(1):42. doi:10.1186/s12866-020-1704-3

    • Search Google Scholar
    • Export Citation
  • 5.

    McDonald JE, Larsen N, Pennington A, et al. Characterising the canine oral microbiome by direct sequencing of reverse-transcribed rRNA molecules. PLoS One. 2016;11(6):e0157046. doi:10.1371/journal.pone.0157046

    • Search Google Scholar
    • Export Citation
  • 6.

    Isaiah A, Hoffmann AR, Kelley R, Mundell P, Steiner JM, Suchodolski JS. Characterization of the nasal and oral microbiota of detection dogs. PLoS One. 2017;12(9):e0184899. doi:10.1371/journal.pone.0184899

    • Search Google Scholar
    • Export Citation
  • 7.

    Cunha E, Rebelo S, Carneiro C, Tavares L, Carreira LM, Oliveira M. A polymicrobial biofilm model for testing the antimicrobial potential of a nisin-biogel for canine periodontal disease control. BMC Vet Res. 2020;16(1):469. doi:10.1186/s12917-020-02646-3

    • Search Google Scholar
    • Export Citation
  • 8.

    Niemiec B, Gawor J, Nemec A, et al. World Small Animal Veterinary Association Global Dental Guidelines. J Small Anim Pract. 2020;61(7):E36E161. doi:10.1111/jsap.13132

    • Search Google Scholar
    • Export Citation
  • 9.

    Lund EM, Armstrong PJ, Kirk CA, Kolar LM, Klausner JS. Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J Am Vet Med Assoc. 1999;214(9):13361341.

    • Search Google Scholar
    • Export Citation
  • 10.

    Stepaniuk K. Periodontology. In: Lobprise HB, Dodd JR, eds. Wigg's Veterinary Dentistry Principles and Practice. Wiley Blackwell; 1997:186231.

    • Search Google Scholar
    • Export Citation
  • 11.

    Fernandes N, Borges A, Reis E, Sepúlveda R, Pontes K. Prevalence of periodontal disease in dogs and owners' level of awareness – a prospective clinical trial. Rev Ceres. 2012;59(4):446451.

    • Search Google Scholar
    • Export Citation
  • 12.

    Wallis C, Patel KV, Marshall M, et al. A longitudinal assessment of periodontal health status in 53 Labrador Retrievers. J Small Anim Pract. 2018;59(9):560569.

    • Search Google Scholar
    • Export Citation
  • 13.

    Valm AM. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol. 2019;431(16):29572969. doi:10.1016/j.jmb.2019.05.016

    • Search Google Scholar
    • Export Citation
  • 14.

    Wallis C, Marshall M, Colyer A, O'Flynn C, Deusch O, Harris S. A longitudinal assessment of changes in bacterial community composition associated with the development of periodontal disease in dogs. Vet Microbiol. 2015;181(3–4):271282. doi:10.1016/j.vetmic.2015.09.003

    • Search Google Scholar
    • Export Citation
  • 15.

    Sultan AS, Kong EF, Rizk AM, Jabra-Rizk MA. The oral microbiome: a lesson in coexistence. PLoS Pathog. 2018;14(1):e1006719. doi:10.1371/journal.ppat.1006719

    • Search Google Scholar
    • Export Citation
  • 16.

    Bass D, Stentiford GD, Wang HC, Koskella B, Tyler CR. The pathobiome in animal and plant diseases. Trends Ecol Evol. 2019;34(11):9961008. doi:10.1016/j.tree.2019.07.012

    • Search Google Scholar
    • Export Citation
  • 17.

    Wallis CV, Marshall-Jones ZV, Deusch O, Hughes KR. Canine and feline microbiomes. In: Singh RP, Kothari R, Koringa PG, Singh SP, eds. Understanding Host-Microbiome Interactions – an Omics Approach. Springer; 2017:279325.

    • Search Google Scholar
    • Export Citation
  • 18.

    Flancman R, Singh A, Weese JS. Evaluation of the impact of dental prophylaxis on the oral microbiota of dogs. PLoS One. 2018;13(6):e0199676. doi:10.1371/journal.pone.0199676

    • Search Google Scholar
    • Export Citation
  • 19.

    Niemiec BA, Gawor J, Prem A, Tang S, Krumbeck JA. The mycobiome of the oral cavity in healthy dogs and dogs with periodontal disease. Am J Vet Res. 2022;83:in press.

    • Search Google Scholar
    • Export Citation
  • 20.

    Tang S, Prem A, Tjokrosurjo J, et al. The canine skin and ear microbiome: a comprehensive survey of pathogens implicated in canine skin and ear infections using a novel next-generation-sequencing-based assay. Vet Microbiol. 2020;247:108764. doi:10.1016/j.vetmic.2020.108764

    • Search Google Scholar
    • Export Citation
  • 21.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581583.

    • Search Google Scholar
    • Export Citation
  • 22.

    Nemergut DR, Schmidt SK, Fukami T, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77(3):342356.

    • Search Google Scholar
    • Export Citation
  • 23.

    Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335336.

    • Search Google Scholar
    • Export Citation
  • 24.

    Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi:10.1186/gb-2011-12-6-r60

    • Search Google Scholar
    • Export Citation
  • 25.

    Lof M, Janus MM, Krom BP. Metabolic interactions between bacteria and fungi in commensal oral biofilms. J Fungi (Basel). 2017;3(3):40. doi:10.3390/jof3030040

    • Search Google Scholar
    • Export Citation
  • 26.

    Barcina I, Arana I. The viable but nonculturable phenotype: a crossroads in the life-cycle of non-differentiating bacteria? Rev Environ Sci Biotechnol. 2009;8(3):254255.

    • Search Google Scholar
    • Export Citation
  • 27.

    Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745759. doi:10.1038/s41579-018-0089-x

    • Search Google Scholar
    • Export Citation
  • 28.

    Rodrigues MX, Bicalho RC, Fiani N, Lima SF, Peralta S. The subgingival microbial community of feline periodontitis and gingivostomatitis: characterization and comparison between diseased and healthy cats. Sci Rep. 2019;9(1):12340. doi:10.1038/s41598-019-48852-4

    • Search Google Scholar
    • Export Citation
  • 29.

    Özavci V, Erbas G, Parin U, Yüksel HT, Kirkan S. Molecular detection of feline and canine periodontal pathogens. Vet Anim Sci. 2019;8:100069. doi:10.1016/j.vas.2019.100069

    • Search Google Scholar
    • Export Citation
  • 30.

    Drahansky M. Liveness detection in biometrics. In: Chetty G, Yang J, eds. Advanced Biometric Technologies. IntechOpen; 2011. doi:10.5772/17205

    • Search Google Scholar
    • Export Citation
  • 31.

    Bringuier A, Khelaifia S, Richet H, Aboudharam G, Drancourt M. Real-time PCR quantification of Methanobrevibacter oralis in periodontitis. J Clin Microbiol. 2013;51(3):993994.

    • Search Google Scholar
    • Export Citation
  • 32.

    Wallis C, Milella L, Colyer A, O'Flynn C, Harris S, Holcombe LJ. Subgingival microbiota of dogs with healthy gingiva or early periodontal disease from different geographical locations. BMC Vet Res. 2021;17(1):7. doi:10.1186/s12917-020-02660-5

    • Search Google Scholar
    • Export Citation
  • 33.

    Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. doi:10.1186/s12915-019-0699-4

    • Search Google Scholar
    • Export Citation
  • 34.

    Langendijk PS, Kulik EM, Sandmeier H, Meyer J, van der Hoeven JS. Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. Int J Syst Evol Microbiol. 2001;51(pt 3):10351044.

    • Search Google Scholar
    • Export Citation
  • 35.

    Riggio MP, Lennon A, Taylor DJ, Bennett D. Molecular identification of bacteria associated with canine periodontal disease. Vet Microbiol. 2011;150(3–4):394400.

    • Search Google Scholar
    • Export Citation
  • 36.

    Sanguansermsri P, Chairatvit K, Roytrakul S, Doungudomdacha S, Surarit R. Exploring difference in subgingival microbial communities in dog and human periodontal diseases using DGGE technique. Thai J Vet Med. 2017;47(1):714.

    • Search Google Scholar
    • Export Citation
  • 37.

    Khemwong T, Kobayashi H, Ikeda Y, et al. Fretibacterium sp. human oral taxon 360 is a novel biomarker for periodontitis screening in the Japanese population. PLoS One. 2019;14(6):e0218266. doi:10.1371/journal.pone.0218266

    • Search Google Scholar
    • Export Citation
  • 38.

    Burkovski A. Corynebacterium pseudodiphtheriticum: putative probiotic, opportunistic infector, emerging pathogen. Virulence. 2015;6(7):673674.

    • Search Google Scholar
    • Export Citation
  • 39.

    Nackaerts O, Jacobs R, Quirynen M, Rober M, Sun Y, Teughels W. Replacement therapy for periodontitis: pilot radiographic evaluation in a dog model. J Clin Periodontol. 2008;35(12):10481052.

    • Search Google Scholar
    • Export Citation
  • 40.

    Matsubara VH, Bandara HMHN, Ishikawa KH, Mayer MPA, Samaranayake LP. The role of probiotic bacteria in managing periodontal disease: a systematic review. Expert Rev Anti Infect Ther. 2016;14(7):643655. doi:10.1080/14787210.2016.1194198

    • Search Google Scholar
    • Export Citation
  • 41.

    Krumbeck JA, Maldonado-Gomez MX, Martínez I, et al. In vivo selection to identify bacterial strains with enhanced ecological performance in synbiotic applications. Appl Environ Microbiol. 2015;81(7):24552465.

    • Search Google Scholar
    • Export Citation
  • 42.

    Niemiec BA. Periodontal disease. Top Companion Anim Med. 2008;23(2):7280.

  • 43.

    Davies J. Origins and evolution of antibiotic resistance. Microbiologia. 1996;12(1):916.

  • 44.

    Lappin MR, Blondeau J, Boothe D, et al. Antimicrobial use guidelines for treatment of respiratory tract disease in dogs and cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J Vet Intern Med. 2017;31(2):279294.

    • Search Google Scholar
    • Export Citation

The bacteriome of the oral cavity in healthy dogs and dogs with periodontal disease

View More View Less
  • 1 Veterinary Dental Specialties and Oral Surgery, San Diego, CA
  • | 2 Veterinary Clinic Arka, Krakow, Poland
  • | 3 MiDOG LLC, Tustin, CA
  • | 4 Zymo Research Corp., Irvine, CA

Abstract

OBJECTIVE

To compare the bacteriome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease.

ANIMALS

Dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease.

PROCEDURES

The maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the V1–V3 region of the 16S rRNA gene.

RESULTS

714 bacterial species from 177 families were identified. The 3 most frequently found bacterial species were Actinomyces sp (48/51 samples), Porphyromonas cangingivalis (47/51 samples), and a Campylobacter sp (48/51 samples). The most abundant species were P cangingivalis, Porphyromonas gulae, and an undefined Porphyromonas sp. Porphyromonas cangingivalis and Campylobacter sp were part of the core microbiome shared among the 4 groups, and P gulae, which was significantly enriched in dogs with severe periodontal disease, was part of the core microbiome shared between all groups except dogs without periodontal disease. Christensenellaceae sp, Bacteroidales sp, Family XIII sp, Methanobrevibacter oralis, Peptostreptococcus canis, and Tannerella sp formed a unique core microbiome in dogs with severe periodontal disease.

CONCLUSIONS AND CLINICAL RELEVANCE

Results highlighted that in dogs, potential pathogens can be common members of the oral cavity bacteriome in the absence of disease, and changes in the relative abundance of certain members of the bacteriome can be associated with severity of periodontal disease. Future studies may aim to determine whether these changes are the cause or result of periodontal disease or the host immune response.

Abstract

OBJECTIVE

To compare the bacteriome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease.

ANIMALS

Dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease.

PROCEDURES

The maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the V1–V3 region of the 16S rRNA gene.

RESULTS

714 bacterial species from 177 families were identified. The 3 most frequently found bacterial species were Actinomyces sp (48/51 samples), Porphyromonas cangingivalis (47/51 samples), and a Campylobacter sp (48/51 samples). The most abundant species were P cangingivalis, Porphyromonas gulae, and an undefined Porphyromonas sp. Porphyromonas cangingivalis and Campylobacter sp were part of the core microbiome shared among the 4 groups, and P gulae, which was significantly enriched in dogs with severe periodontal disease, was part of the core microbiome shared between all groups except dogs without periodontal disease. Christensenellaceae sp, Bacteroidales sp, Family XIII sp, Methanobrevibacter oralis, Peptostreptococcus canis, and Tannerella sp formed a unique core microbiome in dogs with severe periodontal disease.

CONCLUSIONS AND CLINICAL RELEVANCE

Results highlighted that in dogs, potential pathogens can be common members of the oral cavity bacteriome in the absence of disease, and changes in the relative abundance of certain members of the bacteriome can be associated with severity of periodontal disease. Future studies may aim to determine whether these changes are the cause or result of periodontal disease or the host immune response.

Supplementary Materials

    • Supplementary Figure S1 (PDF 501 KB)
    • Supplementary Figure S2 (PDF 502 KB)
    • Supplementary Figure S3 (PDF 407 KB)
    • Supplementary Table S1 (PDF 104 KB)
    • Supplementary Table S2 (PDF 166 KB)

Contributor Notes

Contributed equally to this work.

Corresponding author: Dr. Krumbeck (jkrumbeck@midogtest.com).