• 1.

    Baker JL, Bor B, Agnello M, Shi W, He X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol. 2017;25(5):362374.

  • 2.

    Koo H, Andes DR, Krysan DJ. Candida–streptococcal interactions in biofilm-associated oral diseases. PLoS Pathog. 2018;14(12):e1007342. doi:10.1371/journal.ppat.1007342

    • Search Google Scholar
    • Export Citation
  • 3.

    Kilian M. The oral microbiome – friend or foe? Eur J Oral Sci. 2018;126(suppl 1):512.

  • 4.

    Wallis C, Marshall M, Colyer A, O'Flynn C, Deusch O, Harris S. A longitudinal assessment of changes in bacterial community composition associated with the development of periodontal disease in dogs. Vet Microbiol. 2015;181(3–4):271282. doi:10.1016/j.vetmic.2015a.09.003

    • Search Google Scholar
    • Export Citation
  • 5.

    Diaz PI, Hong BY, Dupuy AK, Strausbaugh LD. Mining the oral mycobiome: methods, components, and meaning. Virulence. 2017;8(3):313323. doi:10.1080/21505594.2016.1252015

    • Search Google Scholar
    • Export Citation
  • 6.

    Dupuy AK, David MS, Li L, et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One. 2014;9(3):e90899. doi:10.1371/journal.pone.0090899

    • Search Google Scholar
    • Export Citation
  • 7.

    Kobayashi C. Distribution of yeast-form fungi in oral cavity of dog. Int J Oral-Med Sci. 2008;7(1):4044.

  • 8.

    Santin R, Souza Mattei A, Bressan Waller S, et al. Clinical and mycological analysis of dog's oral cavity. Braz J Microbiol. 2013;44(1):139143.

    • Search Google Scholar
    • Export Citation
  • 9.

    Ghannoum MA, Jurevic RJ, Mukherjee PK, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713. doi:10.1371/journal.ppat.1000713

    • Search Google Scholar
    • Export Citation
  • 10.

    Sultan AS, Kong EF, Rizk AM, Jabra-Rizk MA. The oral microbiome: a lesson in coexistence. PLoS Pathog. 2018;14(1):e1006719. doi:10.1371/journal.ppat.1006719

    • Search Google Scholar
    • Export Citation
  • 11.

    Sparber F, De Gregorio C, Steckholzer S, et al. The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host Microbe. 2019;25(3):389403.e6. doi:10.1016/j.chom.2019.02.002

    • Search Google Scholar
    • Export Citation
  • 12.

    American Veterinary Dental College. AVDC nomenclature. Accessed August 16, 2021. https://avdc.org/avdc-nomenclature/

  • 13.

    Tang S, Prem A, Tjokrosurjo J, et al. The canine skin and ear microbiome: a comprehensive survey of pathogens implicated in canine skin and ear infections using a novel next-generation-sequencing-based assay. Vet Microbiol. 2020;247:108764. doi:10.1016/j.vetmic.2020.108764

    • Search Google Scholar
    • Export Citation
  • 14.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581583.

    • Search Google Scholar
    • Export Citation
  • 15.

    Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335336.

    • Search Google Scholar
    • Export Citation
  • 16.

    Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi:10.1186/gb-2011-12-6-r60

    • Search Google Scholar
    • Export Citation
  • 17.

    Seyedmousavi S, Bosco SMG, De Hoog S, et al. Fungal infections in animals: a patchwork of different situations. Med Mycol. 2018;56(suppl 1):165187.

    • Search Google Scholar
    • Export Citation
  • 18.

    Billen F, Clercx C, Le Garérrès A, Massart L, Mignon B, Peeters D. Effect of sampling method and incubation temperature on fungal culture in canine sinonasal aspergillosis. J Small Anim Pract. 2009;50(2):6772.

    • Search Google Scholar
    • Export Citation
  • 19.

    Deepa A, Nair BJ, Sivakumar T, Joseph AP. Uncommon opportunistic fungal infections of oral cavity: a review. J Oral Maxillofac Pathol. 2014;18(2):235243.

    • Search Google Scholar
    • Export Citation
  • 20.

    Lof M, Janus MM, Krom BP. Metabolic interactions between bacteria and fungi in commensal oral biofilms. J Fungi (Basel). 2017;3(3):40. doi:10.3390/jof3030040

    • Search Google Scholar
    • Export Citation
  • 21.

    Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. J Microbiol. 2011;49(2):171177.

  • 22.

    Bertolini M, Ranjan A, Thompson A, et al. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathog. 2019;15(4):e1007717. doi:10.1371/journal.ppat.1007717

    • Search Google Scholar
    • Export Citation
  • 23.

    Bertolini M, Dongari-Bagtzoglou A. The relationship of Candida albicans with the oral bacterial microbiome in health and disease. Adv Exp Med Biol. 2019;1197:6978.

    • Search Google Scholar
    • Export Citation
  • 24.

    Yang C, Pakpour S, Klironomos J, Li D-W. Microfungi in indoor environments: what is known and what is not. In: Li D-W, ed. Biology of Microfungi. Springer; 2016:373412.

    • Search Google Scholar
    • Export Citation
  • 25.

    Pérez-Cantero A, Guarro J. Sarocladium and Acremonium infections: new faces of an old opportunistic fungus. Mycoses. 2020;63(11):12031214.

    • Search Google Scholar
    • Export Citation
  • 26.

    Ballhausen B, Geisweid K, Hartmann K, Hirschberger J, Majzoub M, Schulz B. Systemic Acremonium species infection in a dog. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2016;44(6):424428.

    • Search Google Scholar
    • Export Citation
  • 27.

    Chen Q, Hou LW, Duan WJ, Crous PW, Cai L. Didymellaceae revisited. Stud Mycol. 2017;87:105159.

  • 28.

    Salehi M, Zibafar E, Mahmoudi S, et al. First report of invasive pulmonary infection by Didymella microchlamydospora and successful treatment with voriconazole. Clin Microbiol Infect. 2019;25(3):392393. doi:10.1016/j.cmi.2018.10.018

    • Search Google Scholar
    • Export Citation
  • 29.

    Hurst C. Dirt and disease: the ecology of soil fungi and plant fungi that are infectious for vertebrates. In: Understanding Terrestrial Microbial Communities. Springer; 2019:289405.

    • Search Google Scholar
    • Export Citation
  • 30.

    Rodriguez-Campos S, Rostaher A, Zwickl L, et al. Impact of the early-life skin microbiota on the development of canine atopic dermatitis in a high-risk breed birth cohort. Sci Rep. 2020;10(1):1044. doi:10.1038/s41598-020-57798-x

    • Search Google Scholar
    • Export Citation
  • 31.

    Sihelská Z, Pangrácová Piterová M, Čonková E, Harčárová M, Böhmová E. Malassezia versus Candida in healthy dogs. Folia Vet. 2017;61(1):5459.

    • Search Google Scholar
    • Export Citation
  • 32.

    Meason-Smith C, Diesel A, Patterson AP, et al. What is living on your dog's skin? Characterization of the canine cutaneous mycobiota and fungal dysbiosis in canine allergic dermatitis. FEMS Microbiol Ecol. 2015;91(12):fiv139. doi:10.1093/femsec/fiv139

    • Search Google Scholar
    • Export Citation
  • 33.

    Guillot J, Bond R. Malassezia yeasts in veterinary dermatology: an updated overview. Front Cell Infect Microbiol. 2020;10:79. doi:10.3389/fcimb.2020.00079

    • Search Google Scholar
    • Export Citation
  • 34.

    Bond R, Morris DO, Guillot J, et al. Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet Dermatol. 2020;31(1):2874.

    • Search Google Scholar
    • Export Citation
  • 35.

    Porter SR, Scully C. Oral malodour (halitosis). BMJ. 2006;333(7569):632635.

  • 36.

    Del Prete S, Vullo D, Ghobril C, et al. Cloning, purification, and characterization of a β-carbonic anhydrase from Malassezia restricta, an opportunistic pathogen involved in dandruff and seborrheic dermatitis. Int J Mol Sci. 2019;20(10):2447 doi:10.3390/ijms20102447

    • Search Google Scholar
    • Export Citation
  • 37.

    Honnavar P, Prasad GS, Ghosh A, Dogra S, Handa S, Rudramurthy SM. Malassezia arunalokei sp. nov., a novel yeast species isolated from seborrheic dermatitis patients and healthy individuals from India. J Clin Microbiol. 2016;54(7):18261834.

    • Search Google Scholar
    • Export Citation
  • 38.

    Sandoval-Denis M, Gené J, Sutton DA, Wiederhold NP, Cano-Lira JF, Guarro J. New species of Cladosporium associated with human and animal infections. Persoonia. 2016;36:281298.

    • Search Google Scholar
    • Export Citation
  • 39.

    Ashbee HR, Evans EGV. Immunology of diseases associated with Malassezia species. Clin Microbiol Rev. 2002;15(1):2157.

  • 40.

    Diaz PI, Strausbaugh LD, Dongari-Bagtzoglou A. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front Cell Infect Microbiol. 2014;4:101. doi:10.3389/fcimb.2014.00101

    • Search Google Scholar
    • Export Citation
  • 41.

    Davies J. Origins and evolution of antibiotic resistance. Microbiologia. 1996;12(1):916.

  • 42.

    Lappin MR, Blondeau J, Boothe D, et al. Antimicrobial use guidelines for treatment of respiratory tract disease in dogs and cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J Vet Intern Med. 2017;31(2):279294.

    • Search Google Scholar
    • Export Citation
  • 43.

    Lockhart SR, Guarner J. Emerging and reemerging fungal infections. Semin Diagn Pathol. 2019;36(3):177181.

  • 44.

    Jadhav V, Pal M. Canine mycotic stomatitis due to Candida albicans. Rev Iberoam Micol. 2006;23(4):233234.

  • 45.

    Mino Y. Optimization of immunosuppression and the prevention of fungal infection in autoimmune diseases. Yakugaku Zasshi. 2015;135(10):11231127.

    • Search Google Scholar
    • Export Citation
  • 46.

    Kačírová J, Mad'ar M, Štrkolcová G, Mad'ari A, Nemcová R. Dental biofilm as etiological agent of canine periodontal disease. In: Dincer S, Özdenefe MS, Arkut A, eds. Bacterial Biofilms IntechOpen; 2020. doi:10.5772/intechopen.88305

    • Search Google Scholar
    • Export Citation

The mycobiome of the oral cavity in healthy dogs and dogs with periodontal disease

View More View Less
  • 1 Veterinary Dental Specialties and Oral Surgery, San Diego, CA
  • | 2 Veterinary Clinic Arka, Krakow, Poland
  • | 3 MiDOG LLC, Tustin, CA
  • | 4 Zymo Research Corp, Irvine, CA

Abstract

OBJECTIVE

To investigate the mycobiome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease.

ANIMALS

51 dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease.

PROCEDURES

The whole maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the internal transcribed spacer 2 region with a commercial sequencing platform.

RESULTS

Fungi were detected in all samples, with a total of 320 fungal species from 135 families detected in the data set. No single fungal species was found in all samples. The 3 most frequently found fungal species were Cladosporium sp (46/51 samples), Malassezia restricta (44/51 samples), and Malassezia arunalokei (36/51 samples). Certain fungi, specifically those of the family Didymellaceae, the family Irpicaceae, and the order Pleosporales, were significantly associated with different stages of periodontitis. Mycobial analysis indicated that Cladosporium sp could be considered part of the core oral cavity mycobiome.

CONCLUSIONS AND CLINICAL RELEVANCE

Results highlighted that fungi are present in the oral cavity of dogs and are characterized by substantial species diversity, with different fungal communities associated with various stages of periodontal disease. The next-generation DNA sequencing used in the present study revealed substantially more species of fungi than previous culture-based studies.

Abstract

OBJECTIVE

To investigate the mycobiome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease.

ANIMALS

51 dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease.

PROCEDURES

The whole maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the internal transcribed spacer 2 region with a commercial sequencing platform.

RESULTS

Fungi were detected in all samples, with a total of 320 fungal species from 135 families detected in the data set. No single fungal species was found in all samples. The 3 most frequently found fungal species were Cladosporium sp (46/51 samples), Malassezia restricta (44/51 samples), and Malassezia arunalokei (36/51 samples). Certain fungi, specifically those of the family Didymellaceae, the family Irpicaceae, and the order Pleosporales, were significantly associated with different stages of periodontitis. Mycobial analysis indicated that Cladosporium sp could be considered part of the core oral cavity mycobiome.

CONCLUSIONS AND CLINICAL RELEVANCE

Results highlighted that fungi are present in the oral cavity of dogs and are characterized by substantial species diversity, with different fungal communities associated with various stages of periodontal disease. The next-generation DNA sequencing used in the present study revealed substantially more species of fungi than previous culture-based studies.

Supplementary Materials

    • Supplementary Figure S1 (PDF 91 KB)
    • Supplementary Table S1 (PDF 109 KB)
    • Supplementary Table S2 (PDF 146 KB)

Contributor Notes

Contributed equally to this work.

Corresponding author: Dr. Krumbeck (jkrumbeck@midogtest.com)