• 1.

    Von Hendy-Willson VE, Pressler BM. An overview of glomerular filtration rate testing in dogs and cats. Vet J. 2011;188(2):156165. doi:10.1016/j.tvjl.2010.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Pressler BM. Clinical approach to advanced renal function testing in dogs and cats. Vet Clin North Am Small Anim Pract. 2013;43(6):11931208, v. doi:10.1016/j.cvsm.2013.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Haller M, Müller W, Binder H, Estelberger W, Arnold P. Single-injection inulin clearance—a simple method for measuring glomerular filtration rate in dogs. Res Vet Sci. 1998;64(2):151156. doi:10.1016/s0034-5288(98)90011-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Watson ADJ, Lefebvre HP, Concordet D, et al. Plasma exogenous creatinine clearance test in dogs: comparison with other methods and proposed limited sampling strategy. J Vet Intern Med. 2002;16(1):2233. doi:10.1892/0891-6640(2002)016<0022:peccti>2.3.co;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Bovée KC, Kronfeld DS, Ramberg C, Goldschmidt M. Long-term measurement of renal function in partially nephrectomized dogs fed 56, 27, or 19% protein. Invest Urol. 1979;16(5):378384.

    • Search Google Scholar
    • Export Citation
  • 6.

    Watson AD, Church DB, Fairburn AJ. Postprandial changes in plasma urea and creatinine concentrations in dogs. Am J Vet Res. 1981;42(11):18781880.

    • Search Google Scholar
    • Export Citation
  • 7.

    Hall JA, Yerramilli M, Obare E, Yerramilli M, Almes K, Jewell DE. Serum concentrations of symmetric dimethylarginine and creatinine in dogs with naturally occurring chronic kidney disease. J Vet Intern Med. 2016;30(3):794802. doi:10.1111/jvim.13942

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Nabity MB, Lees GE, Boggess MM, et al. Symmetric dimethylarginine assay validation, stability, and evaluation as a marker for the early detection of chronic kidney disease in dogs. J Vet Intern Med. 2015;29(4):10361044. doi:10.1111/jvim.12835

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hall JA, Yerramilli M, Obare E, Yerramilli M, Melendez LD, Jewell DE. Relationship between lean body mass and serum renal biomarkers in healthy dogs. J Vet Intern Med. 2015;29(3):808814. doi:10.1111/jvim.12607

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Pelander L, Häggström J, Larsson A, et al. Comparison of the diagnostic value of symmetric dimethylarginine, cystatin C, and creatinine for detection of decreased glomerular filtration rate in dogs. J Vet Intern Med. 2019;33(2):630639. doi:10.1111/jvim.15445

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    McKenna M, Pelligand L, Elliott J, Cotter D, Jepson R. Relationship between serum iohexol clearance, serum SDMA concentration, and serum creatinine concentration in non-azotemic dogs. J Vet Intern Med. 2020;34(1):186194. doi:10.1111/jvim.15659

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Lee SK, Park S, Cheon B, Kim HW, Yu D, Choi J. Body weight, blood pressure, and systemic changes following low-dosage prednisolone administration in dogs. Am J Vet Res. 2017;78(9):10911097. doi:10.2460/ajvr.78.9.1091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Masters AK, Berger DJ, Ware WA, et al. Effects of short-term anti-inflammatory glucocorticoid treatment on clinicopathologic, echocardiographic, and hemodynamic variables in systemically healthy dogs. Am J Vet Res. 2018;79(4):411423. doi:10.2460/ajvr.79.4.411

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Tinklenberg RL, Murphy SD, Mochel JP, et al. Evaluation of dose-response effects of short-term oral prednisone administration on clinicopathologic and hemodynamic variables in healthy dogs. Am J Vet Res. 2020;81(4):317325. doi:10.2460/ajvr.81.4.317

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Smets PMY, Lefebvre HP, Aresu L, et al. Renal function and morphology in aged Beagle dogs before and after hydrocortisone administration. PLoS One. 2012;7(2):e31702. doi:10.1371/journal.pone.0031702

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hall JE, Morse CL, Smith MJ, Young DB, Guyton AC. Control of arterial pressure and renal function during glucocorticoid excess in dogs. Hypertension. 1980;2(2):139148. doi:10.1161/01.hyp.2.2.139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kelly JJ, Tam SH, Williamson PM, Lawson J, Whitworth JA. The nitric oxide system and cortisol-induced hypertension in humans. Clin Exp Pharmacol Physiol. 1998;25(11):945946. doi:10.1111/j.1440-1681.1998.tb02349.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ferrari P. Cortisol and the renal handling of electrolytes: role in glucocorticoid-induced hypertension and bone disease. Best Pract Res Clin Endocrinol Metab. 2003;17(4):575589. doi:10.1016/s1521-690x(03)00053-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Smets P, Meyer E, Maddens B, Daminet S. Cushing’s syndrome, glucocorticoids and the kidney. Gen Comp Endocrinol. 2010;169(1):110. doi:10.1016/j.ygcen.2010.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Acierno MJ, Brown S, Coleman AE, et al. ACVIM consensus statement: guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats. J Vet Intern Med. 2018;32(6):18031822. doi:10.1111/jvim.15331

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    WSAVA Nutritional Assessment Guidelines Task Force Members; Freeman L, Becvarova I, et al. WSAVA nutritional assessment guidelines. J Small Anim Pract. 2011;52(7):385396. doi:10.1111/j.1748-5827.2011.01079.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Relford R, Robertson J, Clements C. Symmetric dimethylarginine. Vet Clin North Am Small Anim Pract. 2016;46(6):941960. doi:10.1016/j.cvsm.2016.06.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Braun JP, Lefebvre HP, Watson ADJ. Creatinine in the dog: a review. Vet Clin Pathol. 2003;32(4):162179. doi:10.1111/j.1939-165x.2003.tb00332.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Lavoué R, Trumel C, Smets PMY, et al. Characterization of proteinuria in Dogue de Bordeaux dogs, a breed predisposed to a familial glomerulonephropathy: a retrospective study. PLoS One. 2015;10(7):e0133311. doi:10.1371/journal.pone.0133311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Théron ML, Piane L, Lucarelli L, et al. Effects of storage conditions on results for quantitative and qualitative evaluation of proteins in canine urine. Am J Vet Res. 2017;78(8):990999. doi:10.2460/ajvr.78.8.990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Heiene R, Moe L. Pharmacokinetic aspects of measurement of glomerular filtration rate in the dog: a review. J Vet Intern Med. 1998;12(6):401414. doi:10.1111/j.1939-1676.1998.tb02143.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Peters AM. Expressing glomerular filtration rate in terms of extracellular fluid volume. Nephrol Dial Transplant. 1992;7(3):205210. doi:10.1093/oxfordjournals.ndt.a092106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Lefebvre HP, Bargues I, Biourge V. Volume of distribution of creatinine in dogs: an indicator of body water content. J Vet Intern Med. 2011;25:732. 2011 ACVIM Forum Research abstract NM-3.

    • Search Google Scholar
    • Export Citation
  • 29.

    Harrison MH. Effects on thermal stress and exercise on blood volume in humans. Physiol Rev. 1985;65(1):149209. doi:10.1152/physrev.1985.65.1.149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):17631768. doi:10.1213/ANE.0000000000002864

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Baas JJM, Schaeffer F, Joles JA. The influence of cortisol excess on kidney function in the dog. Vet Q. 1984;6(1):1721. doi:10.1080/01652176.1984.9693901

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Baylis C, Handa RK, Sorkin M. Glucocorticoids and control of glomerular filtration rate. Semin Nephrol. 1990;10(4):320329.

  • 33.

    Kubota E, Hayashi K, Matsuda H, et al. Role of intrarenal angiotensin II in glucocorticoid-induced renal vasodilation. Clin Exp Nephrol. 2001;5(3):186192. doi:10.1007/s101570170009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Schellenberg S, Mettler M, Gentilini F, Portmann R, Glaus TM, Reusch CE. The effects of hydrocortisone on systemic arterial blood pressure and urinary protein excretion in dogs. J Vet Intern Med. 2008;22(2):273281. doi:10.1111/j.1939-1676.2007.0039.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Waters CB, Adams LG, Scott-Moncrieff JC, et al. Effects of glucocorticoid therapy on urine protein-to-creatinine ratios and renal morphology in dogs. J Vet Intern Med. 1997;11(3):172177. doi:10.1111/j.1939-1676.1997.tb00086.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Haentjens P, De Meirleir L, Abs R, Verhelst J, Poppe K, Velkeniers B. Glomerular filtration rate in patients with Cushing’s disease: a matched case-control study. Eur J Endocrinol. 2005;153(6):819829. doi:10.1530/eje.1.02040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Whittemore JC, Mooney AP, Price JM, Thomason J. Clinical, clinicopathologic, and gastrointestinal changes from administration of clopidogrel, prednisone, or combination in healthy dogs: a double-blind randomized trial. J Vet Intern Med. 2019;33(6):26182627. doi:10.1111/jvim.15630

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Dhont E, Van Der Heggen T, De Jaeger A, Vande Walle J, De Paepe P, De Cock PA. Augmented renal clearance in pediatric intensive care: are we undertreating our sickest patients? Pediatr Nephrol. 2020;35(1):2539. doi:10.1007/s00467-018-4120-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Smets PMY, Lefebvre HP, Kooistra HS, et al. Hypercortisolism affects glomerular and tubular function in dogs. Vet J. 2012;192(3):532534. doi:10.1016/j.tvjl.2011.05.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Radhakutty A, Mangelsdorf BL, Drake SM, et al. Opposing effects of rheumatoid arthritis and low dose prednisolone on arginine metabolomics. Atherosclerosis. 2017;266:190195. doi:10.1016/j.atherosclerosis.2017.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Kopke MA, Burchell RK, Ruaux CG, Burton SE, Lopez-Villalobos N, Gal A. Variability of symmetric dimethylarginine in apparently healthy dogs: IOI of SDMA. J Vet Intern Med. 2018;32(2):736742. doi:10.1111/jvim.15050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Ling GV, Stabenfeldt GH, Comer KM, Gribble DH, Schechter RD. Canine hyperadrenocorticism: pretreatment clinical and laboratory evaluation of 117 cases. J Am Vet Med Assoc. 1979;174(11):12111215.

    • Search Google Scholar
    • Export Citation
  • 43.

    Hulter HN, Sigala JF, Sebastian A, Ilnicki LP, Harbottle JA. Effects of dexamethasone on renal and systemic acid-base metabolism. Kidney Int. 1981;20(1):4349. doi:10.1038/ki.1981.102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Harvey JW, West CL. Prednisone-induced increases in serum alpha-2-globulin and haptoglobin concentrations in dogs. Vet Pathol. 1987;24(1):9092. doi:10.1177/030098588702400115

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Biewenga WJ, Rijnberk A, Mol JA. Osmoregulation of systemic vasopressin release during long-term glucocorticoid excess: a study in dogs with hyperadrenocorticism. Acta Endocrinol (Copenh). 1991;124(5):583588. doi:10.1530/acta.0.1240583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Lei L, Mao Y. Hormone treatments in congestive heart failure. J Int Med Res. 2018;46(6):20632081. doi:10.1177/0300060518761262

  • 47.

    Souverein PC, Berard A, Van Staa TP, et al. Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study. Heart. 2004;90(8):859865. doi:10.1136/hrt.2003.020180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Colburn WA, Sibley CR, Buller RH. Comparative serum prednisone and prednisolone concentrations following prednisone or prednisolone administration to Beagle dogs. J Pharm Sci. 1976;65(7):9971001. doi:10.1002/jps.2600650711

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Moore GE, Mahaffey EA, Hoenig M. Hematologic and serum biochemical effects of long-term administration of anti-inflammatory doses of prednisone in dogs. Am J Vet Res. 1992;53(6):10331037.

    • Search Google Scholar
    • Export Citation
  • 50.

    Chastain CB, Graham CL. Adrenocortical suppression in dogs on daily and alternate-day prednisone administration. Am J Vet Res. 1979;40(7):936941.

    • Search Google Scholar
    • Export Citation
  • 51.

    Kemppainen RJ, Lorenz MD, Thompson FN. Adrenocortical suppression in the dog given a single intramuscular dose of prednisone or triamcinolone acetonide. Am J Vet Res. 1982;43(2):204206.

    • Search Google Scholar
    • Export Citation
  • 52.

    O’Connell JMB, Romeo JA, Mudge GH. Renal tubular secretion of creatinine in the dog. Am J Physiol. 1962;203(6):985990. doi:10.1152/ajplegacy.1962.203.6.985

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Finco DR, Tabaru H, Brown SA, Barsanti JA. Endogenous creatinine clearance measurement of glomerular filtration rate in dogs. Am J Vet Res. 1993;54(10):15751578.

    • Search Google Scholar
    • Export Citation

Advertisement

Short course of immune-suppressive doses of prednisolone, evaluated through a prospective double-masked placebo-controlled clinical trial in healthy Beagles, is associated with sustained modifications in renal, hydration, and electrolytic status

M. I. Mantelli DVM1, B. B. Roques PhD2,3, T. A. Blanchard DVM1, M. Mounier DVM1, M. Quincey1, F. B. Jolivet DVM1, N. P. Jousserand DVM, PhD4, A. Marchand1, A. N. Diquélou DVM, PhD, HDR4, B. S. Reynolds DVM, PhD1, M. Coyne DVM5, C. Trumel DVM, PhD, HDR6, H. P. Lefebvre DVM, PhD, HDR1,2, D. Concordet PhD, HDR3, and R. Lavoué DVM, PhD
View More View Less
  • 1 Department of Clinical Sciences, Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
  • | 2 Department of Physiology & Therapeutics, Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
  • | 3 Innovations thérapeutiques et résistances, Université de Toulouse, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Ecole Nationale Vétérinaire de Toulouse, Université Paul-Sabatier, Toulouse, France
  • | 4 Institut de recherche en santé digestive, Université de Toulouse, INSERM, Institut national de recherche pour l’agriculture, Ecole Nationale Vétérinaire de Toulouse, Université Paul-Sabatier, Toulouse, France
  • | 5 Idexx Laboratories Inc, Westbrook, ME
  • | 6 Laboratoire Central de Biologie Médicale, Centre Régional d’Exploration Fonctionnelle et de Ressources Expérimentales, Université de Toulouse, Université Paul-Sabatier, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France

Abstract

OBJECTIVE

To investigate the effects and duration of orally administered prednisolone on renal function evaluated by glomerular filtration rate (GFR) determination and creatinine (Cr) and symmetric dimethylarginine (SDMA) concentrations as well as on urinalysis, electrolytes, and hydric status in healthy dogs.

ANIMALS

14 healthy Beagles.

PROCEDURES

In this prospective double-masked placebo-controlled study, dogs were randomized after baseline evaluation to receive a 7-day course of either prednisolone (1.5 to 2.0 mg/kg, PO, q 12 h) or a placebo. A repeated-measure design was performed, each dog participating in 4 successive sampling sessions. Clinical data, systolic blood pressure, CBC, and biochemical analyses including serum SDMA concentration, GFR determination, urine output quantification, and complete urinalysis were performed for all dogs the day before (D0) and at the end of steroid administration (D7) as well as 2 weeks (D21) and 4 weeks (D35) after the end of treatment.

RESULTS

At D7, when compared with baseline, GFR increased significantly in treated dogs, whereas creatinine and SDMA concentrations decreased significantly. GFR and Cr but not SDMA modifications persisted significantly at D21. None of the variables differed significantly from baseline at D35. The OR of presenting an albumin band on urine electrophoresis was 2.4 times as high in treated versus control dogs (OR, 36; 95% CI, 1.8 to 719.4; P = 0.02).

CLINICAL RELEVANCE

A short-term course of immune-suppressive prednisolone treatment in healthy dogs leads to a sustained but reversible renal hyperfiltration state. Modification in electrolytic variables can affect the clinical interpretation of blood work in such patients.

Abstract

OBJECTIVE

To investigate the effects and duration of orally administered prednisolone on renal function evaluated by glomerular filtration rate (GFR) determination and creatinine (Cr) and symmetric dimethylarginine (SDMA) concentrations as well as on urinalysis, electrolytes, and hydric status in healthy dogs.

ANIMALS

14 healthy Beagles.

PROCEDURES

In this prospective double-masked placebo-controlled study, dogs were randomized after baseline evaluation to receive a 7-day course of either prednisolone (1.5 to 2.0 mg/kg, PO, q 12 h) or a placebo. A repeated-measure design was performed, each dog participating in 4 successive sampling sessions. Clinical data, systolic blood pressure, CBC, and biochemical analyses including serum SDMA concentration, GFR determination, urine output quantification, and complete urinalysis were performed for all dogs the day before (D0) and at the end of steroid administration (D7) as well as 2 weeks (D21) and 4 weeks (D35) after the end of treatment.

RESULTS

At D7, when compared with baseline, GFR increased significantly in treated dogs, whereas creatinine and SDMA concentrations decreased significantly. GFR and Cr but not SDMA modifications persisted significantly at D21. None of the variables differed significantly from baseline at D35. The OR of presenting an albumin band on urine electrophoresis was 2.4 times as high in treated versus control dogs (OR, 36; 95% CI, 1.8 to 719.4; P = 0.02).

CLINICAL RELEVANCE

A short-term course of immune-suppressive prednisolone treatment in healthy dogs leads to a sustained but reversible renal hyperfiltration state. Modification in electrolytic variables can affect the clinical interpretation of blood work in such patients.

Contributor Notes

Corresponding author: Dr. Mantelli (morgane.mantelli@envt.fr)