Ex vivo biomechanical characteristics and effects on gap formation of using an internal fixation plate to augment primary three-loop pulley repair of canine gastrocnemius tendons

Yi-Jen Chang Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC

Search for other papers by Yi-Jen Chang in
Current site
Google Scholar
PubMed
Close
 BVetMed, MS
,
Daniel J. Duffy Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC

Search for other papers by Daniel J. Duffy in
Current site
Google Scholar
PubMed
Close
 BVM&S(Hons), MS
,
Wes Beamon Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC

Search for other papers by Wes Beamon in
Current site
Google Scholar
PubMed
Close
 DVM
, and
George E. Moore Department of Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, IN

Search for other papers by George E. Moore in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

OBJECTIVE

To evaluate the effects of using an internal fixation plate to augment primary 3-loop pulley (3LP) repair of canine gastrocnemius tendons (GTs).

SAMPLE

48 cadaveric GTs from 24 adult dogs.

PROCEDURES

GTs were dissected free from other tissues, transected, and randomly assigned to 4 groups (n = 12/group). GTs were repaired with 2-0 polypropylene with a 3LP repair alone or a 3LP repair augmented with a 3-hole veterinary cuttable plate (3VCP), a 5-hole veterinary cuttable plate (5VCP), or a 7-hole veterinary cuttable plate (7VC P). Biomechanical loads, construct stiffness, gap formation, and failure modes were compared between groups.

RESULTS

Yield, peak, and failure loads were all significantly increased for the 5VCP and 7VCP groups, compared with the 3LP alone group. Increasing plate length from 3VCP to 5VCP and from 3VCP to 7VCP increased yield, peak, and failure loads. No differences were found between the 3LP and 3VCP groups with regard to yield and peak loads, but failure load was increased in the 3VCP group. Loads to create 1-mm and 3-mm gaps were significantly greater for the 5VCP and 7VCP groups, compared with the 3LP alone and 3VCP groups. Mode of plate attachment failure differed among groups.

CLINICAL RELEVANCE

Tendon plate augmentation may be a viable surgical option to increase the strength of the tenorrhaphy in dogs. However, in vivo studies evaluating the effects of plate augmentation on the tendon blood supply and progression of healing are needed prior to clinical application.

Abstract

OBJECTIVE

To evaluate the effects of using an internal fixation plate to augment primary 3-loop pulley (3LP) repair of canine gastrocnemius tendons (GTs).

SAMPLE

48 cadaveric GTs from 24 adult dogs.

PROCEDURES

GTs were dissected free from other tissues, transected, and randomly assigned to 4 groups (n = 12/group). GTs were repaired with 2-0 polypropylene with a 3LP repair alone or a 3LP repair augmented with a 3-hole veterinary cuttable plate (3VCP), a 5-hole veterinary cuttable plate (5VCP), or a 7-hole veterinary cuttable plate (7VC P). Biomechanical loads, construct stiffness, gap formation, and failure modes were compared between groups.

RESULTS

Yield, peak, and failure loads were all significantly increased for the 5VCP and 7VCP groups, compared with the 3LP alone group. Increasing plate length from 3VCP to 5VCP and from 3VCP to 7VCP increased yield, peak, and failure loads. No differences were found between the 3LP and 3VCP groups with regard to yield and peak loads, but failure load was increased in the 3VCP group. Loads to create 1-mm and 3-mm gaps were significantly greater for the 5VCP and 7VCP groups, compared with the 3LP alone and 3VCP groups. Mode of plate attachment failure differed among groups.

CLINICAL RELEVANCE

Tendon plate augmentation may be a viable surgical option to increase the strength of the tenorrhaphy in dogs. However, in vivo studies evaluating the effects of plate augmentation on the tendon blood supply and progression of healing are needed prior to clinical application.

All Time Past Year Past 30 Days
Abstract Views 331 0 0
Full Text Views 8167 7379 4058
PDF Downloads 679 226 27
Advertisement