Transcranial Doppler ultrasonography detects the elevation of cerebral blood flow during ictal-phase of pentetrazol-induced seizures in dogs

Kazuyoshi Sasaoka Veterinary Teaching Hospital, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan

Search for other papers by Kazuyoshi Sasaoka in
Current site
Google Scholar
PubMed
Close
 DVM
,
Hiroshi Ohta Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan

Search for other papers by Hiroshi Ohta in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Tomohito Ishizuka Veterinary Teaching Hospital, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan

Search for other papers by Tomohito Ishizuka in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Kazuki Kojima Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan

Search for other papers by Kazuki Kojima in
Current site
Google Scholar
PubMed
Close
 DVM
,
Noboru Sasaki Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan

Search for other papers by Noboru Sasaki in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Mitsuyoshi Takiguchi Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan

Search for other papers by Mitsuyoshi Takiguchi in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

OBJECTIVE

To investigate the association between changes in cerebral blood flow and electrographic epileptic seizure in dogs using transcranial Doppler ultrasonography (TCD).

ANIMALS

6 healthy Beagle dogs.

PROCEDURES

Each dog was administered pentetrazol (1.5 mg/kg/min) or saline (0.9% NaCl) solution under general anesthesia with continuous infusion of propofol. Both pentetrazol and saline solution were administered to all 6 dogs, with at least 28 days interval between the experiments. Blood flow waveforms in the middle cerebral artery and the basilar artery were obtained using TCD at baseline, after pentetrazol administration, and after diazepam administration. TCD velocities, including peak systolic velocity, end-diastolic velocity, and mean velocity and resistance variables, were determined from the Doppler waveforms.

RESULTS

During ictal-phase of pentetrazol-induced seizures, the TCD velocities significantly increased in the basilar and middle cerebral arteries while TCD vascular resistance variables did not change in either artery. The TCD velocities significantly decreased after diazepam administration. Systemic parameters, such as the heart rate, mean arterial pressure, systemic vascular resistance, cardiac index, end-tidal carbon dioxide, oxygen saturation, and body temperature, did not change significantly during seizures.

CLINICAL RELEVANCE

This study showed that cerebral blood flow, as obtained from TCD velocities, increased by 130% during ictal-phase of pentetrazol-induced seizures in dogs. The elevated velocities returned to baseline after seizure suppression. Thus, TCD may be used to detect electrographic seizures during the treatment of status epilepticus in dogs, and further clinical studies clarifying the association between changes in cerebral blood flow and non-convulsive seizure cases are needed.

Abstract

OBJECTIVE

To investigate the association between changes in cerebral blood flow and electrographic epileptic seizure in dogs using transcranial Doppler ultrasonography (TCD).

ANIMALS

6 healthy Beagle dogs.

PROCEDURES

Each dog was administered pentetrazol (1.5 mg/kg/min) or saline (0.9% NaCl) solution under general anesthesia with continuous infusion of propofol. Both pentetrazol and saline solution were administered to all 6 dogs, with at least 28 days interval between the experiments. Blood flow waveforms in the middle cerebral artery and the basilar artery were obtained using TCD at baseline, after pentetrazol administration, and after diazepam administration. TCD velocities, including peak systolic velocity, end-diastolic velocity, and mean velocity and resistance variables, were determined from the Doppler waveforms.

RESULTS

During ictal-phase of pentetrazol-induced seizures, the TCD velocities significantly increased in the basilar and middle cerebral arteries while TCD vascular resistance variables did not change in either artery. The TCD velocities significantly decreased after diazepam administration. Systemic parameters, such as the heart rate, mean arterial pressure, systemic vascular resistance, cardiac index, end-tidal carbon dioxide, oxygen saturation, and body temperature, did not change significantly during seizures.

CLINICAL RELEVANCE

This study showed that cerebral blood flow, as obtained from TCD velocities, increased by 130% during ictal-phase of pentetrazol-induced seizures in dogs. The elevated velocities returned to baseline after seizure suppression. Thus, TCD may be used to detect electrographic seizures during the treatment of status epilepticus in dogs, and further clinical studies clarifying the association between changes in cerebral blood flow and non-convulsive seizure cases are needed.

Supplementary Materials

    • Supplementary Table S1 (PDF 125 KB)

Contributor Notes

Corresponding author: Dr. Takiguchi (mtaki@vetmed.hokudai.ac.jp)
  • 1.

    Blades Golubovic S, Rossmeisl JH Jr. Status epilepticus in dogs and cats, part 2: treatment, monitoring, and prognosis. J Vet Emerg Crit Care (San Antonio). 2017;27(3):288300. doi:10.1111/vec.12604

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Berendt M, Farquhar RG, Mandigers PJ, et al. International veterinary epilepsy task force consensus report on epilepsy definition, classification and terminology in companion animals. BMC Vet Res. 2015;11:182. doi:10.1186/s12917-015-0461-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Trinka E, Cock H, Hesdorffer D, et al. A definition and classification of status epilepticus–report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015;56(10):15151523. doi:10.1111/epi.13121

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Meldrum BS, Horton RW. Physiology of status epilepticus in primates. Arch Neurol. 1973;28(1):19. doi:10.1001/archneur.1973.00490190019001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Betjemann JP, Lowenstein DH. Status epilepticus in adults. Lancet Neurol. 2015;14(6):615624. doi:10.1016/S1474-4422(15)00042-3

  • 6.

    Brophy GM, Bell R, Claassen J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):323. doi:10.1007/s12028-012-9695-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Granum LK, Bush WW, Williams DC, Stecker MM, Weaver CE, Werre SR. Prevalence of electrographic seizure in dogs and cats undergoing electroencephalography and clinical characteristics and outcome for dogs and cats with and without electrographic seizure: 104 cases (2009–2015). J Am Vet Med Assoc. 2019;254(8):967973. doi:10.2460/javma.254.8.967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    DeLorenzo RJ, Waterhouse EJ, Towne AR, et al. Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia. 1998;39(8):833840. doi:10.1111/j.1528-1157.1998.tb01177.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Parmentier T, Monteith G, Cortez MA, et al. Effect of prior general anesthesia or sedation and antiseizure drugs on the diagnostic utility of wireless video electroencephalography in dogs. J Vet Intern Med. 2020;34(5):19671974. doi:10.1111/jvim.15856

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ingvar M. Cerebral blood flow and metabolic rate during seizures. Relationship to epileptic brain damage. Ann N Y Acad Sci. 1986;462:194206. doi:10.1111/j.1749-6632.1986.tb51254.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Schwartz TH. Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr. 2007;7(4):9194. doi:10.1111/j.1535-7511.2007.00183.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Nersesyan H, Hyder F, Rothman DL, Blumenfeld H. Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab. 2004;24(6):589599. doi:10.1097/01.WCB.0000117688.98763.23

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769774. doi:10.3171/jns.1982.57.6.0769

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bassett L, Troncy E, Pouliot M, Paquette D, Ascah A, Authier S. Telemetry video-electroencephalography (EEG) in rats, dogs and non-human primates: methods in follow-up safety pharmacology seizure liability assessments. J Pharmacol Toxicol Methods. 2014;70(3):230240. doi:10.1016/j.vascn.2014.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Pellegrino FC, Sica RE. Canine electroencephalographic recording technique: findings in normal and epileptic dogs. Clin Neurophysiol. 2004;115(2):477487. doi:10.1016/s1388-2457(03)00347-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Sasaoka K, Nakamura K, Osuga T, et al. Transcranial Doppler ultrasound examination in dogs with suspected intracranial hypertension caused by neurologic diseases. J Vet Intern Med. 2018;32(1):314323. doi:10.1111/jvim.14900

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Meldrum BS, Nilsson B. Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline. Brain. 1976;99(3):523542. doi:10.1093/brain/99.3.523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Gilboe DD, Betz AL. Oxygen uptake in the isolated canine brain. Am J Physiol. 1973;224(3):588595. doi:10.1152/ajplegacy.1973.224.3.588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Merceron S, Geeraerts T, Montlahuc C, Bedos JP, Resche-Rigon M, Legriel S. Assessment of cerebral blood flow changes in nonconvulsive status epilepticus in comatose patients: a pathophysiological transcranial Doppler study. Seizure. 2014;23(4):284289. doi:10.1016/j.seizure.2014.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Fukushima U, Sasaki S, Okano S, Takase K, Hagio M. The comparison between the cerebral blood flow directly measures and cerebral blood flow velocity in the middle and basilar cerebral arteries measured by transcranial Doppler ultrasonography. J Vet Med Sci. 1999;61(12):12931297. doi:10.1292/jvms.61.1293

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Washio T, Sasaki H, Ogoh S. Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise. Am J Physiol Heart Circ Physiol. 2017;312(4):H827H831. doi:10.1152/ajpheart.00676.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lipnick MS, Cahill EA, Feiner JR, Bickler PE. Comparison of transcranial Doppler and ultrasound-tagged near infrared spectroscopy for measuring relative changes in cerebral blood flow in human subjects. Anesth Analg. 2018;126(2):579587. doi:10.1213/ANE.0000000000002590

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK. Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol (1985). 2014;117(10):10901096. doi:10.1152/japplphysiol.00285.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Harrell JW, Morgan BJ, Schrage WG. Impaired hypoxic cerebral vasodilation in younger adults with metabolic syndrome. Diab Vasc Dis Res. 2013;10(2):135142. doi:10.1177/1479164112448875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Bode H. Intracranial blood flow velocities during seizures and generalized epileptic discharges. Eur J Pediatr. 1992;151(9):706709. doi:10.1007/BF01957579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Zhao M, Nguyen J, Ma H, Nishimura N, Schaffer CB, Schwartz TH. Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus. J Neurosci. 2011;31(37):1329213300. doi:10.1523/JNEUROSCI.2597-11.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Cagnotti G, Ferrini S, Ala U, et al. Analysis of early assessable risk factors for poor outcome in dogs with cluster seizures and status epilepticus. Front Vet Sci. 2020;7:575551. doi:10.3389/fvets.2020.575551

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kreisman NR, Gauthier-Lewis ML, Conklin SG, Voss NF, Barbee RW. Cardiac output and regional hemodynamics during recurrent seizures in rats. Brain Res. 1993;626(1-2):295302. doi:10.1016/0006-8993(93)90590-j

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Mackinnon AD, Aaslid R, Markus HS. Long-term ambulatory monitoring for cerebral emboli using transcranial Doppler ultrasound. Stroke. 2004;35(1):7378. doi:10.1161/01.STR.0000106915.83041.0A

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Slupe AM, Kirsch JR. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. J Cereb Blood Flow Metab. 2018;38(12):21922208. doi:10.1177/0271678X18789273

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. 1995;83(1):6676. doi:10.1097/00000542-199507000-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kim ES, Sharma AM, Scissons R, et al. Interpretation of peripheral arterial and venous Doppler waveforms: a consensus statement from the Society for Vascular Medicine and Society for Vascular Ultrasound. Vasc Med. 2020;25(5):484506. doi:10.1177/1358863X20937665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Duque FJ, Barrera-Chacon R, Ruiz P, Casamian-Sorrosal D, Zaragoza C, Dominguez-Roldan JM. Effect of transient carotid artery compression during transcranial Doppler ultrasonography in dogs. Vet Rec. 2010;167(13):481484. doi:10.1136/vr.c4141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Fox J, Gelb AW, Enns J, Murkin JM, Farrar JK, Manninen PH. The responsiveness of cerebral blood flow to changes in arterial carbon dioxide is maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology. 1992;77(3):453456. doi:10.1097/00000542-199209000-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Markwalder TM, Grolimund P, Seiler RW, Roth F, Aaslid R. Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure–a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab. 1984;4(3):368372. doi:10.1038/jcbfm.1984.54

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Stretti F, Gotti M, Pifferi S, Brandi G, Annoni F, Stocchetti N. Body temperature affects cerebral hemodynamics in acutely brain injured patients: an observational transcranial color-coded duplex sonography study. Crit Care. 2014;18(5):552. doi:10.1186/s13054-014-0552-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Caines D, Sinclair M, Valverde A, Dyson D, Gaitero L, Wood D. Comparison of isoflurane and propofol for maintenance of anesthesia in dogs with intracranial disease undergoing magnetic resonance imaging. Vet Anaesth Analg. 2014;41(5):468479. doi:10.1111/vaa.12163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Vieites-Prado A, Iglesias-Rey R, Fernández-Susavila H, et al. Protective effects and magnetic resonance imaging temperature mapping of systemic and focal hypothermia in cerebral ischemia. Stroke. 2016;47(9):23862396. doi:10.1161/STROKEAHA.116.014067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Favre ME, Lim V, Falvo MJ, Serrador JM. Cerebrovascular reactivity and cerebral autoregulation are improved in the supine posture compared to upright in healthy men and women. PLoS One. 2020;15(3):e0229049. doi:10.1371/journal.pone.0229049

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement