Orcutt C, Malakoff R. Cardiovascular disease. In: Quesenberry K, Orcutt C, Mans C, Carpenter JW, eds. Ferrets, Rabbits and Rodents, Clinical Medicine and Surgery. 4th ed. Saunders; 2020:250–257.
Schuhmann BHK. Cardiac disease in pet rabbits. [German] Herzerkrankungen bei Kaninchen. Wien Tierarztl Monatsschr. 2014;101(9-10):197–205.
Di Girolamo N, Palmieri C, Baron Toaldo M, et al. First description of partial atrioventricular septal defect in a rabbit. J Exot Pet Med. 2018;27(4):5–9.
Lord B, Devine C, Smith S. Congestive heart failure in two pet rabbits. J Small Anim Pract. 2011;52(1):46–50.
Vörös K, Seehusen F, Hungerbühler S, Meyer-Lindenberg A, von der Hoeh N. Ventricular septal defect with aortic valve insufficiency in a New Zealand White rabbit. J Am Anim Hosp Assoc. 2011;47(4):e42–e49. doi:10.5326/jaaha-ms-5498
Shell LG, Saunders G. Arteriosclerosis in a rabbit. J Am Vet Med Assoc. 1989;194(5):679–680.
Künzel F, Kolm U, Bohler A, Url A. Mitral regurgitation due to papillary muscle dysfunction in a pet rabbit. A case report. Tieräerztliche Praxis Ausgabe K Kleintiere/Heimtiere. 2005;33(6):423–430.
Martel-Arquette A, Tjostheim SS, Miller J, Carlson J, Mans C. Aortocavitary fistula secondary to vegetative endocarditis in a rabbit. J Vet Cardiol. 2019;21:49–56.
Martin MW, Darke PG, Else RW. Congestive heart failure with atrial fibrillation in a rabbit. Vet Rec. 1987;121(24):570–571.
Yanni AE. The laboratory rabbit: an animal model of atherosclerosis research. Lab Anim. 2004;38(3):246–256.
Hershberger E, Coyle EA, Kaatz GW, Zervos MJ, Rybak MJ. Comparison of a rabbit model of bacterial endocarditis and an in vitro infection model with simulated endocardial vegetations. Antimicrob Agents Chemother. 2000;44(7):1921–1924.
Gava FN, Zacche E, Ortiz EM, et al. Doxorubicin induced dilated cardiomyopathy in a rabbit model: an update. Res Vet Sci. 2013;94(1):115–121.
Ozawa S, Guzman D, Keel K. Clinical and pathological findings in rabbits (oryctolagus cuniculus) with cardiovascular disease: 59 cases (2001–2018). J Am Vet Med Assoc. 2021;259(7):764–776.
Lord B, Boswood A, Petrie A. Electrocardiography of the normal domestic pet rabbit. Vet Rec. 2010;167(25):961–965.
Turner Giannico A, Ayres Garcia DA, Lima L, De Lara FA. Determination of normal echocardiographic, electrocardiographic, and radiographic cardiac parameters in the conscious New Zealand Wite Rabbit. J Exot Pet Med. 2015;24(2):223–234.
Harvey L, Knowles T, Murison PJ. Comparison of direct and Doppler arterial blood pressure measurements in rabbits during isoflurane anaesthesia. Vet Anaesth Analg. 2012;39(2):174–184.
Sato K, Chatani F, Sato S. Circadian and short-term variabilities in blood pressure and heart rate measured by telemetry in rabbits and rats. J Auton Nerv Syst. 1995;54(3):235–246.
Hagemeijer F. Calcium sensitization with pimobendan: pharmacology, haemodynamic improvement, and sudden death in patients with chronic congestive heart failure. Eur Heart J. 1993;14(4):551–566.
Verdouw PD, Hartog JM, Duncker DJ, Roth W, Saxena PR. Cardiovascular profile of pimobendan, a benzimidazole-pyridazinone derivative with vasodilating and inotropic properties. Eur J Pharmacol. 1986;126(1-2):21–30.
Fujimoto S, Matsuda T. Effects of pimobendan, a cardiotonic and vasodilating agent with phosphodiesterase inhibiting properties, on isolated arteries and veins of rats. J Pharmacol Exp Ther. 1990;252(3):1304–311.
Bohm M, Morano I, Pieske B, et al. Contribution of cAMP-phosphodiesterase inhibition and sensitization of the contractile proteins for calcium to the inotropic effect of pimobendan in the failing human myocardium. Circ Res. 1991;68(3):689–701.
Endoh M. Cardiac Ca2+ signaling and Ca2+ sensitizers. Circ J. 2008;72(12):1915–1925.
Atkins C, Bonagura J, Ettinger S, et al. Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. J Vet Intern Med. 2009;23(6):1142–1150.
Summerfield NJ, Boswood A, O’Grady MR, et al. Efficacy of pimobendan in the prevention of congestive heart failure or sudden death in Doberman Pinschers with preclinical dilated cardiomyopathy (the PROTECT Study). J Vet Intern Med. 2012;26(6):1337–1349.
Boswood A, Haggstrom J, Gordon SG, et al. Effect of pimobendan in dogs with preclinical myxomatous mitral valve disease and cardiomegaly: the epic study—a randomized clinical trial. J Vet Intern Med. 2016;30(6):1765–1779.
Vollmar AC, Fox PR. Long-term outcome of irish wolfhound dogs with preclinical cardiomyopathy, atrial fibrillation, or both treated with pimobendan, benazepril hydrochloride, or methyldigoxin monotherapy. J Vet Intern Med. 2016;30(2):553–559.
Boswood A, Gordon SG, Häggström J, et al. Longitudinal analysis of quality of life, clinical, radiographic, echocardiographic, and laboratory variables in dogs with preclinical myxomatous mitral valve disease receiving pimobendan or placebo: the EPIC study. J Vet Intern Med. 2018;32(1):72–85.
Reina-Doreste Y, Stern JA, Keene BW, et al. Case-control study of the effects of pimobendan on survival time in cats with hypertrophic cardiomyopathy and congestive heart failure. J Am Vet Med Assoc. 2014;245(5):534–539.
Yoshiyuki R, Nakata TM, Fukayama T, et al. Pimobendan improves right ventricular myocardial contraction and attenuates pulmonary arterial hypertension in rats with monocrotaline-induced pulmonary arterial hypertension. J Med Ultraon (2001). 2014;41(2):173–180.
Afonso T, Giguére S, Rapoport G, Barton MH, Coleman AE. Cardiovascular effects of pimobendan in healthy mature horses. Equine Vet J. 2016;48(3):352–356.
Fisher P, Graham J. Rabbits. In: Carpenter J, ed. Exotic Animal Formulary. 5th ed. Elsevier; 2018:494–531.
Bell ET, Devi JL, Chiu S, Zahra P, Whittem T. The pharmacokinetics of pimobendan enantiomers after oral and intravenous administration of racemate pimobendan formulations in healthy dogs. J Vet Pharmacol Ther. 2016;39(1):54–61.
Yata M, McLachlan AJ, Foster DJ, Hanzlicek AS, Beijerink NJ. Single-dose pharmacokinetics and cardiovascular effects of oral pimobendan in healthy cats. J Vet Cardiol. 2016;18(4):310–325.
Yata M, McLachlan AJ, Foster DJ, Page SW, Beijerink NJ. Pharmacokinetics and cardiovascular effects following a single oral administration of a nonaqueous pimobendan solution in healthy dogs. J Vet Pharmacol Ther. 2016;39(1):45–53.
Hanzlicek AS, Gehring R, KuKanich B, et al. Pharmacokinetics of oral pimobendan in healthy cats. J Vet Cardiol. 2012;14(4):489–496.
1Vetmedin (Pimobendan) Chewable Tablets Package Insert. Boehringer Ingelheim; 2012.
Chu K-M, Shieh S-M, Hu OY-P. Pharmacokinetics and pharmacodynamics of enantiomers of pimobendan in patients with dilated cardiomyopathy and congestive heart failure after single and repeated oral dosing. Clin Pharmacol Ther. 1995;57(6):610–621.
Chu K-M, Hu OY-P, Shieh S-M. Cardiovascular effect and simultaneous pharmacokinetic and pharmacodynamic modeling of pimobendan in healthy normal subjects. Drug Metab Dispos. 1999;27(6):701–709.
Boehringer Ingelheim Vetmedica I. Freedom of Information Summary: Vetmedin. NADA 141–273. 2007.
Smith SM. Gastrointestinal physiology and nutrition. In: Quesenberry KE, Carpenter JW, Christoph M, eds. Rabbits and Rodents, Clinical Medicine and Surgery. 4th eds. Saunders; 2020:162–173.
Turner PV, Chen CH, Taylor MW. Pharmacokinetics of meloxicam in rabbits after single and repeat oral dosing. Comp Med. 2006;56(1):63–67.
Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16(5):351–380.
Guzman DS, Beaufrere H, KuKanich B, et al. Pharmacokinetics of single oral dose of pimobendan in Hispaniolan Amazon parrots (Amazona ventralis). J Avian Med Surg. 2014;28(2):95–101.
Reinker LN, Lee JA, Hovda LR, Rishniw M. Clinical signs of cardiovascular effects secondary to suspected pimobendan toxicosis in five dogs. J Am Anim Hosp Assoc. 2012;48(4):250–255.
Kitzen JM, Lynch JJ, Driscoll EM, Lucchesi BR. Cardiac electrophysiologic and hemodynamic activity of pimobendan (UD-CG 115 BS), a new inotropic agent. J Pharmacol Exp Ther. 1988;244(3):929–939.
Giallourakis CC, Rosenberg PM, Friedman LS. The liver in heart failure. Clin Liver Dis. 2002;6(4):947–967.
Shammas FV, Dickstein K. Clinical pharmacokinetics in heart failure. An updated review. Clin Pharmacokinet. 1988;15(2):94–113.
Advertisement
To determine the pharmacokinetics and potential adverse effects of pimobendan after oral administration in New Zealand White rabbits (Ocytolagus cuniculi).
10 adult sexually intact (5 males and 5 females) rabbits.
2 pilot studies were performed with a pimobendan suspension or oral tablets. Eight rabbits received 7.5 mg of pimobendan (mean 2.08 mg/kg) suspended in a critical care feeding formula. Plasma concentrations of pimobendan and O-demethylpimobendan (ODMP) were measured, and pharmacokinetic parameters were calculated for pimobendan by noncompartmental analysis. Body weight, food and water consumption, mentation, urine, and fecal output were monitored.
Mean ± SD maximum concentration following pimobendan administration was 15.7 ± 7.54 ng/mL and was detected at 2.79 ± 1.25 hours. The half-life was 3.54 ± 1.32 hours. Plasma concentrations of pimobendan were detectable for up to 24 hours. The active metabolite, ODMP, was detected in rabbits for 24 to 36 hours. An adverse event occurred following administration of pimobendan in tablet form in 1 pilot study, resulting in death secondary to aspiration. No other adverse events occurred.
Plasma concentrations of pimobendan were lower than previously reported for dogs and cats, despite administration of higher doses, and had longer time to maximum concentration and half-life. Based on this study, 2 mg/kg of pimobendan in a critical care feeding formulation should maintain above a target plasma concentration for 12 to 24 hours. However, further studies evaluating multiple-dose administration as well as pharmacodynamic studies and clinical trials in rabbits with congestive heart failure are needed to determine accurate dose and frequency recommendations.