• 1.

    Abarca ML, Martorell J, Castellá G, Ramis A, Cabañes FJ. Dermatomycosis in a pet inland bearded dragon (Pogona vitticeps) caused by a Chrysosporium species related to Nannizziopsis vriesii. Vet Dermatol. 2009;20(4):295299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bowman MR, Paré JA, Sigler L, et al. Deep fungal dermatitis in three inland bearded dragons (Pogona vitticeps) caused by the Chrysosporium anamorph of Nannizziopsis vriesii. Med Mycol. 2007;45(4):371376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Cabañes FJ, Sutton DA, Guarro J. Chrysosporium-related fungi and reptiles: a fatal attraction. PLoS Pathog. 2014; 10(10):e1004367. doi:10.1371/journal.ppat.1004367

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Le Donne V, Crossland N, Brandão J, et al. Nannizziopsis guarroi infection in 2 inland bearded dragons (Pogona vitticeps): clinical, cytologic, histologic, and ultrastructural aspects. Vet Clin Pathol. 2016;45(2):368375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Mitchell MA, Walden MR. Chrysosporium anamorph Nannizziopsis vriesii: an emerging fungal pathogen of captive and wild reptiles. Vet Clin North Am Exot Anim Pract. 2013;16(3):659668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Schmidt-Ukaj S, Loncaric I, Spergser J, Richter B, Hochleithner M. Dermatomycosis in three central bearded dragons (Pogona vitticeps) associated with Nannizziopsis chlamydospora. J Vet Diagn Invest. 2016;28(3):319322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Sigler L, Hambleton S, Paré JA. Molecular characterization of reptile pathogens currently known as members of the Chrysosporium anamorph of Nannizziopsis vriesii complex and relationship with some human-associated isolates. J Clin Microbiol. 2013;51(10):33383357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Paré JA, Sigler L. An overview of reptile fungal pathogens in the genera Nannizziopsis, Paranannizziopsis and Ophidiomyces. J Herpetol Med Surg. 2016;26(1-2):4653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Stchigel AM, Sutton DA, Cano-Lira JF, et al. Phylogeny of Chrysosporia infecting reptiles: proposal of the new family Nannizziopsiaceae and five new species. Persoonia. 2013;31:86100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Woodburn DB, Miller AN, Allender MC, Maddox CW, Terio KA. Emydomyces testavorans, a new genus and species of Onygenalean fungus isolated from shell lesions of freshwater aquatic turtles. J Clin Microbiol, 2019;57(2):111. doi:10.1128/JCM.00628-18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Van Waeyenberghe L, Baert K, Pasmans F, et al. Voriconazole, a safe alternative for treating infections caused by the Chrysosporium anamorph of Nannizziopsis vriesii in bearded dragons (Pogona vitticeps). Med Mycol. 2010;48 (6):880885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Johnson RS, Sangster CR, Sigler L, Hambleton S, Paré JA. Deep fungal dermatitis caused by the Chrysosporium anamorph of Nannizziopsis vriesii in captive coastal bearded dragons (Pogona barbata). Aust Vet J. 2011;89(12):515519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Barot BS, Parejiya PB, Patel HK, Mehta DM, Shelat PK. Drug delivery to the nail: therapeutic options and challenges for onychomycosis. Crit Rev Ther Drug Carrier Syst. 2014;31(6):459494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Jain S, Sehgal VN. Terbinafine, a unique oral antifungal: current perceptions. Int J Dermatol. 2000;39(6):412423.

  • 15.

    Keller KA. Therapeutic review: terbinafine. J Exot Pet Med. 2012;21(2):181185.

  • 16.

    Krishnan-Natesan S. Terbinafine: a pharmacological and clinical review. Expert Opin Pharmacother. 2009;10(16): 27232733.

  • 17.

    Kane LP, Allender MC, Archer G, et al. Pharmacokinetics of nebulized and subcutaneously implanted terbinafine in cottonmouths (Agkistrodon piscivorus). J Vet Pharmacol Ther. 2017;40(5):575579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Emery LC, Cox SK, Souza MJ. Pharmacokinetics of nebulized terbinafine in Hispaniolan Amazon parrots (Amazona ventralis). J Avian Med Surg. 2012;26(3):161166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Evans EE, Emery LC, Cox SK, Souza MJ. Pharmacokinetics of terbinafine after oral administration of a single dose to Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res. 2013;74(6):835838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Court MH, Robbins AH, Whitford AM, Beck EV, Tseng FS, Reeder DM. Pharmacokinetics of terbinafine in little brown myotis (Myotis lucifugus) infected with Pseudogymnoascus destructans. Am J Vet Res. 2017;78(1):9099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Bechert U, Christensen JM, Poppenga R, Le H, Wyatt J, Schmitt T. Pharmacokinetics of orally administered terbinafine in African penguins (Spheniscus demersus) for potential treatment of aspergillosis. J Zoo Wildl Med. 2010;41(2):263274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Souza MJ, Redig P, Cox SK. Plasma concentrations of itraconazole, voriconazole, and terbinafine when delivered by an impregnated, subcutaneous implant in Japanese quail (Coturnix japonica). J Avian Med Surg. 2017;31(2):117122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Bechert U, Christensen JM, Poppenga R, Fahmy SA, Redig P. Pharmacokinetics of terbinafine after single oral dose administration in red-tailed hawks (Buteo jamaicensis). J Avian Med Surg. 2010;24(2):122130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Raiti P. Husbandry, diseases and veterinary care of the bearded dragon (Pogona vitticeps). J Herpetological Med Surg. 2012;22(3-4):117131.

  • 25.

    Osmundson TW, Eyre CE, Harden KM, Dhillon J, Garbelotto MM. Back to basics: an evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples. Mol Ecol Resour. 2013;13(1):6674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Alexander BD, Procop GW, Dufresne P, et al. Reference Method for Broth Dilution Antifungal Susceptibility Testing for Filamentous Fungi. 3rd ed. Clinical and Laboratory Standards Institute; 2015. CLSI Standard M38.

    • Search Google Scholar
    • Export Citation
  • 27.

    Abdel-Rahman SM, Nahata MC. Stability of terbinafine hydrochloride in an extemporaneously prepared oral suspension at 25- and 4-degrees C. Am J Health Syst Pharm. 1999;56(3):243245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Cox S, Hayes J, Hamill M, Martin A, Pistole N. Determining terbinafine in plasma and saline using HPLC. J Liq Chromatogr Relat Technol. 2015;38(5):607612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Lindemann DM, Allender MC, Rzadkowska M, et al. Pharmacokinetics, efficacy and safety of voriconazole and itraconazole in healthy cottonmouths (Agkistrodon piscivorus) and massasauga rattlesnakes (Sistrurus catenatus) with snake fungal disease. J Zoo Wildl Med. 2017;48(3):757766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Wang A, Ding H, Liu Y, Gao Y, Zeng Z. Single dose pharmacokinetics of terbinafine in cats. J Feline Med Surg. 2012;14(8):540544. doi:10.1177/1098612X12442280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Williams MM, Davis EG, Kukanich B. Pharmacokinetics of oral terbinafine in horses and Greyhound dogs. J Vet Pharmacol Ther. 2011;34(3):232237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Nedelman J, Cramer JA, Robbins B, et al. The effect of food on the pharmacokinetics of multiple-dose terbinafine in young and elderly healthy subjects. Biopharm Drug Dispos. 1997;18(2):127138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hosseini-Yeganeh M, McLachlan AJ. Physiologically based pharmacokinetic model for terbinafine in rats and humans. Antimicrob Agents Chemother. 2002;46(7):22192228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Jensen J. Pharmacokinetics of Lamisil in humans. J Dermatolog Treat. 1990;1:(suppl 2) 1518.

  • 35.

    Faergemann J, Zehender H, Denouel J, Millerioux L. Levels of terbinafine in plasma, stratum corneum, dermis, epidermis (without stratum corneum), sebum, hair and nails during and after 250 mg terbinafine orally once per day for four weeks. Acta Derm Venereol. 1993;73(4):305309.

    • Search Google Scholar
    • Export Citation
  • 36.

    Foust AL, Marsella R, Akucewich LH, et al. Evaluation of persistence of terbinafine in the hair of normal cats after 14 days of daily therapy. Vet Dermatol. 2007;18(4):246251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Gimmler JR, White AG, Kennis RA, Cruz-Espindola C, Booth DM. Determining canine skin concentrations of terbinafine to guide the treatment of Malassezia dermatitis. Vet Dermatol. 2015;26(6):411416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Howard JG, Jaensch S. Haematology and plasma biochemistry reference intervals in wild bearded dragons (Pogona vitticeps). Aust Vet J. 2021;99(6):236241. doi:10.1111/avj.13060

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Sakai MR, May ER, Imerman PM, et al. Terbinafine pharmacokinetics after single dose oral administration in the dog. Vet Dermatol. 2011;22(6):528534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Toutain PL, del Castillo JR, Bousquet-Melou A. The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Res Vet Sci. 2002;73(2):105114.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Single-dose pharmacokinetics of orally administered terbinafine in bearded dragons (Pogona vitticeps) and the antifungal susceptibility patterns of Nannizziopsis guarroi

View More View Less
  • 1 Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Champaign-Urbana, Urbana, IL
  • | 2 Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN

Abstract

OBJECTIVE

To identify the antifungal susceptibility of Nanniziopsis guarroi isolates and to evaluate the single-dose pharmacokinetics of orally administered terbinafine in bearded dragons.

ANIMALS

8 healthy adult bearded dragons.

PROCEDURES

4 isolates of N guarroi were tested for antifungal susceptibility. A compounded oral solution of terbinafine (25 mg/mL [20 mg/kg]) was given before blood (0.2 mL) was drawn from the ventral tail vein at 0, 4, 8, 12, 24, 48, 72, and 96 hours after administration. Plasma terbinafine concentrations were measured with high-performance liquid chromatography.

RESULTS

The antifungal minimum inhibitory concentrations against N guarroi isolates ranged from 4,000 to > 64,000 ng/mL for fluconazole, 125 to 2,000 ng/mL for itraconazole, 125 to 2,000 ng/mL for ketoconazole, 125 to 1,000 ng/mL for posaconazole, 60 to 250 ng/mL for voriconazole, and 15 to 30 ng/mL for terbinafine. The mean ± SD peak plasma terbinafine concentration in bearded dragons was 435 ± 338 ng/mL at 13 ± 4.66 hours after administration. Plasma concentrations remained > 30 ng/mL for > 24 hours in all bearded dragons and for > 48 hours in 6 of 8 bearded dragons. Mean ± SD terminal half-life following oral administration was 21.2 ± 12.40 hours.

CLINICAL RELEVANCE

Antifungal susceptibility data are available for use in clinical decision making. Results indicated that administration of terbinafine (20 mg/kg, PO, q 24 to 48 h) in bearded dragons may be appropriate for the treatment of dermatomycoses caused by N guarroi. Clinical studies are needed to determine the efficacy of such treatment.

Contributor Notes

Corresponding author: Dr. Keller (kak@illinois.edu)