Keratometry, biometry, and prediction of intraocular lens power in adult tigers (Panthera tigris)

Cameron D. Owens Blue Pearl Veterinary Partners, Tampa, FL

Search for other papers by Cameron D. Owens in
Current site
Google Scholar
PubMed
Close
 DVM
,
Tammy M. Michau Blue Pearl Veterinary Partners, Tampa, FL
Mars Veterinary Health, Vancouver, WA

Search for other papers by Tammy M. Michau in
Current site
Google Scholar
PubMed
Close
 DVM, MS, MSpVM
,
Justin Boorstein Big Cat Rescue, Tampa, FL

Search for other papers by Justin Boorstein in
Current site
Google Scholar
PubMed
Close
 DVM
,
Elizabeth R. Wynn Big Cat Rescue, Tampa, FL

Search for other papers by Elizabeth R. Wynn in
Current site
Google Scholar
PubMed
Close
 DVM
, and
Richard J. McMullen Jr Department of Veterinary Ophthalmology, JT Vaughan Large Animal Teaching Hospital, College of Veterinary Medicine, Auburn University, Auburn, AL

Search for other papers by Richard J. McMullen Jr in
Current site
Google Scholar
PubMed
Close
 DVM

Abstract

OBJECTIVE

To calculate the necessary pseudophakic intraocular lens (IOL) power to approximate emmetropia in adult tigers.

ANIMALS

17 clinically normal adult tigers.

PROCEDURES

33 eyes of 17 clinically normal adult tigers underwent routine ophthalmic examination and B-scan ultrasonography while anesthetized for unrelated procedures. Specific ultrasound data (globe measurements and corneal curvature) and estimated postoperative IOL positions were utilized to calculate predicted IOL power by use of Retzlaff and Binkhorst theoretical formulas. Applanation tonometry and refraction were also performed.

RESULTS

Mean ± SD axial globe length was 29.36 ± 0.82 mm, preoperative anterior chamber depth was 7.00 ± 0.74 mm, and crystalline lens thickness was 8.72 ± 0.56 mm. Mean net refractive error (n = 33 eyes) was +0.27 ± 0.30 diopters (D). By use of the Retzlaff formula, mean predicted IOL power for the postoperative anterior chamber depth (PACD), PACD – 2 mm, and PACD + 2 mm was 43.72 ± 4.84 D, 37.62 ± 4.19 D, and 51.57 ± 5.72 D, respectively. By use of the Binkhorst equation, these values were 45.11 ± 4.91 D, 38.84 ± 4.25 D, and 53.18 ± 5.81 D, respectively. Mean intraocular pressure for all eyes was 14.7 ± 2.69 mm Hg.

CLINICAL RELEVANCE

The calculated tiger IOL was lower than reported values for adult domestic felids. Further studies evaluating actual PACD and pseudophakic refraction would help determine the appropriate IOL power to achieve emmetropia in this species.

Abstract

OBJECTIVE

To calculate the necessary pseudophakic intraocular lens (IOL) power to approximate emmetropia in adult tigers.

ANIMALS

17 clinically normal adult tigers.

PROCEDURES

33 eyes of 17 clinically normal adult tigers underwent routine ophthalmic examination and B-scan ultrasonography while anesthetized for unrelated procedures. Specific ultrasound data (globe measurements and corneal curvature) and estimated postoperative IOL positions were utilized to calculate predicted IOL power by use of Retzlaff and Binkhorst theoretical formulas. Applanation tonometry and refraction were also performed.

RESULTS

Mean ± SD axial globe length was 29.36 ± 0.82 mm, preoperative anterior chamber depth was 7.00 ± 0.74 mm, and crystalline lens thickness was 8.72 ± 0.56 mm. Mean net refractive error (n = 33 eyes) was +0.27 ± 0.30 diopters (D). By use of the Retzlaff formula, mean predicted IOL power for the postoperative anterior chamber depth (PACD), PACD – 2 mm, and PACD + 2 mm was 43.72 ± 4.84 D, 37.62 ± 4.19 D, and 51.57 ± 5.72 D, respectively. By use of the Binkhorst equation, these values were 45.11 ± 4.91 D, 38.84 ± 4.25 D, and 53.18 ± 5.81 D, respectively. Mean intraocular pressure for all eyes was 14.7 ± 2.69 mm Hg.

CLINICAL RELEVANCE

The calculated tiger IOL was lower than reported values for adult domestic felids. Further studies evaluating actual PACD and pseudophakic refraction would help determine the appropriate IOL power to achieve emmetropia in this species.

Contributor Notes

Corresponding author: Dr. Michau (tammy.miller.michau@effem.com)
  • 1.

    Kleiner JA, Watanabe E, Bettini C. Bilateral phacoemulsification followed by an acrylic foldable intraocular lens implantation in a 2.5 year-old Bengal tigress (Panthera tigris tigris). Abstract in: Proceedings of the 46th Annual Meeting of the American College of Veterinary Ophthalmologists. American College of Veterinary Ophthalmology; 2015: 2.

    • Search Google Scholar
    • Export Citation
  • 2.

    Stuhr CM, Abrams G, Bullimore M, et al. The normal refractive state of the equine. Vet Ophthalmol 1999;2: 265. 1999 American College of Veterinary Ophthalmologists Meeting abstract 059.

    • Search Google Scholar
    • Export Citation
  • 3.

    Davidson MG, Nelms SR. Diseases of the lens and cataract formation. In: Veterinary Ophthalmology. 5th ed. John Wiley & Sons Inc; 2013: 11991233.

    • Search Google Scholar
    • Export Citation
  • 4.

    Lange RR, Lima L, Frühvald E, da Silva VS, de Souza AS, Montiani-Ferreira F. Cataracts and strabismus associated with hand rearing using artificial milk formulas in Bengal tiger (Panthera tigris spp tigris) cubs. Open Vet J. 2017;7(1): 2331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gilger BC, Davidson MG, Colitz CM. Experimental implantation of posterior chamber prototype intraocular lenses for the feline eye. Am J Vet Res. 1998;59(10): 13391343.

    • Search Google Scholar
    • Export Citation
  • 6.

    McMullen RJ Jr, Gilger BC. Keratometry, biometry and prediction of intraocular lens power in the equine eye. Vet Ophthalmol. 2006;9(5): 357360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kuhn SE, Hendrix DVH, Jones MP, Ward DA, Baine KH, Franklin SR. Biometry, keratometry, and calculation of intraocular lens power for the bald eagle (Haliaeetus leucocephalus). Vet Ophthalmol. 2015;18(suppl 1): 106112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Carter RT, Murphy CJ, Stuhr CM, Diehl KA. Bilateral phacoemulsification and intraocular lens implantation in a great horned owl. J Am Vet Med Assoc. 2007;230(4): 559561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Sanchez RF, Becker R, Dawson C, Escanilla N, Lam R. Calculation of posterior chamber intraocular lens (IOL) size and dioptric power for use in pet rabbits undergoing phacoemulsification. Vet Ophthalmol. 2017;20(3): 242249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Townsend WM, Jacobi S, Bartoe JT. Phacoemulsification and implantation of foldable +14 diopter intraocular lenses in five mature horses. Equine Vet J. 2012;44(2): 238243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Remillard RL, Pickett JP, Thatcher CD, Davenport DJ. Comparison of kittens fed queen’s milk with those fed milk replacers. Am J Vet Res. 1993;54(6): 901907.

    • Search Google Scholar
    • Export Citation
  • 12.

    Tilson RL, Seal US. Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species. Noyes Publications; 1988.

    • Search Google Scholar
    • Export Citation
  • 13.

    IUCN red list of threatened species. International Union for Conservation of Nature. Accessed May 28, 2020. https://www.iucn.org/resources/conservation-tools/iucn-red-list-threatened-species

    • Search Google Scholar
    • Export Citation
  • 14.

    Davidson MG, Murphy CJ, Nasisse MP, et al. Refractive state of aphakic and pseudophakic eyes of dogs. Am J Vet Res. 1993;54(1): 174177.

  • 15.

    Peiffer RL Jr, Gaiddon J. Posterior chamber intraocular lens implantation in the dog: results of 65 implants in 61 patients. J Am Anim Hosp Assoc. 1991;27(4): 453462.

    • Search Google Scholar
    • Export Citation
  • 16.

    Nasisse MP, Davidson MG, Jamieson VE, English RV, Olivero DE. Phacoemulsification and intraocular lens implantation in dogs: a study of technique in 182 dogs. Prog Vet Comp Ophthalmol. 1991;1(4): 233238.

    • Search Google Scholar
    • Export Citation
  • 17.

    McMullen RJ, Davidson MG, Campbell NB, Salmon JH, Gilger BC. Evaluation of 30- and 25-diopter intraocular lens implants in equine eyes after surgical extraction of the lens. Am J Vet Res. 2010;71(7): 809816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kane JX, Van Heerden A, Atik A, Petsoglou C. Intraocular lens power formula accuracy: comparison of 7 formulas. J Cataract Refract Surg. 2016;42(10): 14901500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85(5): 472485.

  • 20.

    Holladay JT. Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations. J Cataract Refract Surg. 1997;23(9): 13561370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Retzlaff J. A new intraocular lens calculation formula. J Am Intraocul Implant Soc. 1980;6(2): 148152.

  • 22.

    Binkhorst CD. Power of the prepupillary pseudophakos. Br J Ophthalmol. 1972;56(4): 332337.

  • 23.

    Gaiddon J, Rosolen SG, Steru L, Cook CS, Peiffer R Jr. Use of biometry and keratometry for determining optimal power for intraocular lens implants in dogs. Am J Vet Res. 1991;52(5): 781783.

    • Search Google Scholar
    • Export Citation
  • 24.

    Gilger BC, Davidson MG, Howard PB. Keratometry, ultrasonic biometry, and prediction of intraocular lens power in the feline eye. Am J Vet Res. 1998;59(2): 131134.

    • Search Google Scholar
    • Export Citation
  • 25.

    Meister U, Görig C, Murphy CJ, Haan H, Ohnesorge B, Boevé MH. Intraocular lens power calculation for the equine eye. BMC Vet Res. 2018;14(1): 123. doi: 10.1186/s12917-018-1448-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Howland HC, Merola S, Basarab JR. The allometry and scaling of the size of vertebrate eyes. Vision Res. 2004;44(17): 20432065.

  • 27.

    Townsend WM, Wasserman N, Jacobi S. A pilot study on the corneal curvatures and ocular dimensions of horses less than one year of age. Equine Vet J. 2013;45(2): 256258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Mouney MC, Townsend WM, Moore GE. Association of height, body weight, age, and corneal diameter with calculated intraocular lens strength of adult horses. Am J Vet Res. 2012;73(12): 19771982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Konrade KA, Hoffman AR, Ramey KL, Goldenberg RB, Lehenbauer TW. Refractive states of eyes and associations between ametropia and age, breed, and axial globe length in domestic cats. Am J Vet Res. 2012;73(2): 279284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kubai MA, Bentley E, Miller PE, Mutti DO, Murphy CJ. Refractive states of eyes and association between ametropia and breed in dogs. Am J Vet Res. 2008;69(7): 946951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Belkin M, Yinon U, Rose L, Reisert I. Effect of visual environment on refractive error of cats. Doc Ophthalmol. 1977;42(2): 433437.

  • 32.

    Plummer CE, Ramsey DT, Hauptman JG. Assessment of corneal thickness, intraocular pressure, optical corneal diameter, and axial globe dimensions in Miniature Horses. Am J Vet Res. 2003;64(6): 661665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ofri R. Optics and physiology of vision. In: Veterinary Ophthalmology. 5th ed. John Wiley & Sons Inc; 2013: 208268.

  • 34.

    Boroffka SAEB, Voorhout G, Verbruggen A-M, Teske E. Intraobserver and interobserver repeatability of ocular biometric measurements obtained by means of B-mode ultrasonography in dogs. Am J Vet Res. 2006;67(10): 17431749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Barbé C, Harran N, Goulle F. Intra- and interobserver reliability of lens equatorial length measurement using 35-MHz ultrasound biomicroscopy in dogs with cataract. Vet Ophthalmol. 2017;20(4): 329334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Hahnenberger RW. Influence of various anesthetic drugs on the intraocular pressure of cats. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976;199(2): 179186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Hofmeister EH, Mosunic CB, Torres BT, Ralph AG, Moore PA, Read MR. Effects of ketamine, diazepam, and their combination on intraocular pressures in clinically normal dogs. Am J Vet Res. 2006;67(7): 11361139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ferreira TH, Brosnan RJ, Shilo-Benjamini Y, Moore SB, Hollingsworth SR. Effects of ketamine, propofol, or thiopental administration on intraocular pressure and qualities of induction of and recovery from anesthesia in horses. Am J Vet Res. 2013;74(8): 10701077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Ofri R, Horowitz I, Jacobson S, Kass PH. The effects of anesthesia and gender on intraocular pressure in lions (Panthera leo). J Zoo Wildl Med. 1998;29(3): 307310.

    • Search Google Scholar
    • Export Citation
  • 40.

    Artigas C, Redondo JI, López-Murcia MM. Effects of intravenous administration of dexmedetomidine on intraocular pressure and pupil size in clinically normal dogs. Vet Ophthalmol. 2012;15(suppl 1): 7982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Verbruggen AM, Akkerdaas LC, Hellebrekers LJ, Stades FC. The effect of intravenous medetomidine on pupil size and intraocular pressure in normotensive dogs. Vet Q. 2000;22(3): 179180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Wallin-Håkanson N, Wallin-Håkanson B. The effects of topical tropicamide and systemic medetomidine, followed by atipamezole reversal, on pupil size and intraocular pressure in normal dogs. Vet Ophthalmol. 2001;4(1): 36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Buehner E, Pietsch U-C, Bringmann A, Foja C, Wiedemann P, Uhlmann S. Effects of propofol and isoflurane anesthesia on the intraocular pressure and hemodynamics of pigs. Ophthalmic Res. 2011;45(1): 4246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Ding C, Wang P, Tian N. Effect of general anesthetics on IOP in elevated IOP mouse model. Exp Eye Res. 2011;92(6): 512520.

  • 45.

    Selk Ghaffari M, Arman Gherekhloo A. Effect of body position on intraocular pressure in clinically normal cats. J Feline Med Surg. 2018;20(8): 749751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Ofri R, Steinmetz A, Thielebein J, Horowitz IH, Oechtering G, Kass PH. Factors affecting intraocular pressure in lions. Vet J. 2008;177(1): 124129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ofri R, Shore LS, Kass PH, Horowitz IH. The effect of elevated progesterone levels on intraocular pressure in lions (Panthera leo). Res Vet Sci. 1999;67(2): 121123.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement