Autologous platelet-rich plasma effects on Staphylococcus aureus–induced chondrocyte death in an in vitro bovine septic arthritis model

Andrew J.T. Muir Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Andrew J.T. Muir in
Current site
Google Scholar
PubMed
Close
 DVM
,
Andrew J. Niehaus Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Andrew J. Niehaus in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Joseph W. Lozier Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Joseph W. Lozier in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Sara L. Cole Optical Microscopy Core, Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN

Search for other papers by Sara L. Cole in
Current site
Google Scholar
PubMed
Close
 PhD
,
Zarah A. Belacic Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Zarah A. Belacic in
Current site
Google Scholar
PubMed
Close
,
Gregory A. Ballash Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Gregory A. Ballash in
Current site
Google Scholar
PubMed
Close
 DVM
, and
Sushmitha S. Durgam Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH

Search for other papers by Sushmitha S. Durgam in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD

Abstract

OBJECTIVE

To investigate the chondroprotective effects of autologous platelet-rich plasma (PRP), ampicillin-sulbactam (AmpS), or PRP combined with AmpS (PRP+AmpS) in an in vitro chondrocyte explant model of bovine Staphylococcus aureus–induced septic arthritis.

SAMPLE

Autologous PRP and cartilage explants obtained from 6 healthy, adult, nonlactating Jersey-crossbred cows.

ProcedureS

Autologous PRP was prepared prior to euthanasia using an optimized double centrifugation protocol. Cartilage explants collected from grossly normal stifle joints were incubated in synovial fluid (SF) alone, S aureus–inoculated SF (SA), or SA supplemented with PRP (25% culture medium volume), AmpS (2 mg/mL), or both PRP (25% culture medium volume) and AmpS (2 mg/mL; PRP+AmpS) for 24 hours. The metabolic activity, percentage of dead cells, and glycosaminoglycan content of cartilage explants were measured with a resazurin-based assay, live-dead cell staining, and dimethylmethylene blue assay, respectively. Treatment effects were assessed relative to the findings for cartilage explants incubated in SF alone.

RESULTS

Application of PRP, AmpS, and PRP+AmpS treatments significantly reduced S aureus–induced chondrocyte death (ie, increased metabolic activity and cell viability staining) in cartilage explants, compared with untreated controls. There were no significant differences in chondrocyte death among explants treated with PRP, AmpS, or PRP+AmpS.

CLINICAL RELEVANCE

In this in vitro explant model of S aureus–induced septic arthritis, PRP, AmpS, and PRP+AmpS treatments mitigated chondrocyte death. Additional work to confirm the efficacy of PRP with bacteria commonly associated with clinical septic arthritis in cattle as well as in vivo evaluation is warranted.

Abstract

OBJECTIVE

To investigate the chondroprotective effects of autologous platelet-rich plasma (PRP), ampicillin-sulbactam (AmpS), or PRP combined with AmpS (PRP+AmpS) in an in vitro chondrocyte explant model of bovine Staphylococcus aureus–induced septic arthritis.

SAMPLE

Autologous PRP and cartilage explants obtained from 6 healthy, adult, nonlactating Jersey-crossbred cows.

ProcedureS

Autologous PRP was prepared prior to euthanasia using an optimized double centrifugation protocol. Cartilage explants collected from grossly normal stifle joints were incubated in synovial fluid (SF) alone, S aureus–inoculated SF (SA), or SA supplemented with PRP (25% culture medium volume), AmpS (2 mg/mL), or both PRP (25% culture medium volume) and AmpS (2 mg/mL; PRP+AmpS) for 24 hours. The metabolic activity, percentage of dead cells, and glycosaminoglycan content of cartilage explants were measured with a resazurin-based assay, live-dead cell staining, and dimethylmethylene blue assay, respectively. Treatment effects were assessed relative to the findings for cartilage explants incubated in SF alone.

RESULTS

Application of PRP, AmpS, and PRP+AmpS treatments significantly reduced S aureus–induced chondrocyte death (ie, increased metabolic activity and cell viability staining) in cartilage explants, compared with untreated controls. There were no significant differences in chondrocyte death among explants treated with PRP, AmpS, or PRP+AmpS.

CLINICAL RELEVANCE

In this in vitro explant model of S aureus–induced septic arthritis, PRP, AmpS, and PRP+AmpS treatments mitigated chondrocyte death. Additional work to confirm the efficacy of PRP with bacteria commonly associated with clinical septic arthritis in cattle as well as in vivo evaluation is warranted.

Supplementary Materials

    • Supplementary Table S1 (PDF 193 KB)
All Time Past Year Past 30 Days
Abstract Views 480 0 0
Full Text Views 2895 1934 352
PDF Downloads 905 292 8
Advertisement