• 1.

    da Costa RC. Cervical spondylomyelopathy (wobbler syndrome) in dogs. Vet Clin North Am Small Anim Pract. 2010;40(5):881913.

  • 2.

    Steffen F, Voss K, Morgan JP. Distraction-fusion for caudal cervical spondylomyelopathy using an intervertebral cage and locking plates in 14 dogs. Vet Surg. 2011;40(6):743752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Joffe MR, Parr WCH, Tan C, Walsh WR, Brunel L. Development of a customized interbody fusion device for treatment of canine disk-associated cervical spondylomyelopathy. Vet Comp Orthop Traumatol. 2019;32(1):7986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Zindl C, Litsky AS, Fitzpatrick N, Allen MJ. Kinematic behavior of a novel pedicle screw-rod fixation system for the canine lumbosacral joint. Vet Surg. 2018;47(1):114124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Trotter EJ. Cervical spine locking plate fixation for treatment of cervical spondylotic myelopathy in large breed dogs. Vet Surg. 2009;38(6):705718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Denny HR, Gibbs C, Gaskell CJ. Cervical spondylopathy in the dog—a review of thirty‐five cases. J Small Anim Pract. 1977;18(2):117132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    McKee WM, Butterworth SJ, Scott HW. Management of cervical spondylopathy-associated intervertebral, disk protrusions using metal washers in 78 dogs. J Small Anim Pract. 1999;40(10):465472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Read RA, Robins GM, Carlisle CH. Caudal cervical spondylomyelopathy (wobbler syndrome) in the dog: a review of thirty cases. J Small Anim Pract. 1983;24(10):605621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mason TA. Cervical vertebral instability (wobbler syndrome) in the Doberman. Aust Vet J. 1977;53(9):440445.

  • 10.

    Dixon BC, Tomlinson JL, Kraus KH. Modified distraction-stabilization technique using an interbody polymethyl methacrylate plug in dogs with caudal cervical spondylomyelopathy. J Am Vet Med Assoc. 1996;208(1):6168.

    • Search Google Scholar
    • Export Citation
  • 11.

    Bruecker KA, Seim H, Blass CE. Caudal cervical spondylomyelopathy: decompression by linear traction and stabilization with Steinmann pins and polymethyl methacrylate. J Am Anim Hosp Assoc. 1990;26(6):677683.

    • Search Google Scholar
    • Export Citation
  • 12.

    Ellison GW, Seim HB III, Clemmons RM. Distracted cervical spinal fusion for management of caudal cervical spondylomyelopathy in large-breed dogs. J Am Vet Med Assoc. 1988;193(4):447453.

    • Search Google Scholar
    • Export Citation
  • 13.

    Queen JP, Coughlan AR, May C, Bennett D, Penderis J. Management of disk-associated wobbler syndrome with a partial slot fenestration and position screw technique. J Small Anim Pract. 1998;39: 131136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    McKee WM, Lavelle RB, Mason TA. Vertebral stabilisation for cervical spondylopathy using a screw and washer technique. J Small Anim Pract. 1989;30(6):337342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bergman RL, Levine JM, Coates JR, Bahr A, Hettlich BF, Kerwin SC. Cervical spinal locking plate in combination with cortical ring allograft for a one level fusion in dogs with cervical spondylotic myelopathy. Vet Surg. 2008;37(6):530536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Voss K, Steffen F, Montavon PM. Use of the ComPact UniLock System for ventral stabilization procedures of the cervical spine: a retrospective study. Vet Comp Orthop Traumatol. 2006;19(1):2128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hicks DG, Pitts MJ, Bagley RS, et al. In vitro biomechanical evaluations of screw-bar–polymethylmethacrylate and pin-polymethylmethacrylate internal fixation implants used to stabilize the vertebral motion unit of the fourth and fifth cervical vertebrae in vertebral column specimens from dogs. Am J Vet Res. 2009;70(6):719726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Shamir MH, Chai O, Loeb E. A method for intervertebral space distraction before stabilization combined with complete ventral slot for treatment of disk‐associated wobbler syndrome in dogs. Vet Surg. 2008;37(2):186192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Reints Bok TE, Willemsen K, van Rijen MHP, Grinwis GCM, Tryfonidou MA, Meij BP. Instrumented cervical fusion in nine dogs with caudal cervical spondylomyelopathy. Vet Surg. 2019;48(7):12871298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Harrop JS, Youssef JA, Maltenfort M, et al. Lumbar adjacent segment degeneration and disease after arthrodesis and total disk arthroplasty. Spine (Phila Pa 1976). 2008;33(15):17011707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Yue W-M, Brodner W, Highland TR. Long-term results after anterior cervical discectomy and fusion with allograft and plating: a 5- to 11-year radiologic and clinical follow-up study. Spine (Phila Pa 1976). 2005;30(19):21382144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Goffin J, Geusens E, Vantomme N, et al. Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech. 2004;17(2):7985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Eck JC, Humphreys SC, Lim T-H, et al. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine (Phila Pa 1976). 2002;27(22):24312434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976). 1995;20(11):13071314.

  • 25.

    Urban JP, Holm S, Maroudas A, Nachemson A. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res. 1982;(170):296302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mitchell RA, Innes JF, McNally D. Pressure profilometry of the lumbosacral disk in dogs. Am J Vet Res. 2001;62(11):17341739.

  • 27.

    Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disk degeneration. Spine (Phila Pa 1976). 2001;26(17):18731878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Tremblay J, Brailovski V, Mac-Thiong J-M, Petit Y. Factors affecting intradiscal pressure measurement during in vitro biomechanical tests. Scoliosis. 2015;10(suppl 2):S1. doi: 10.1186/1748-7161-10-S2-S1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Hofstetter M, Gédet P, Doherr M, Ferguson SJ, Forterre F. Biomechanical analysis of the three‐dimensional motion pattern of the canine cervical spine segment C4–C5. Vet Surg. 2009;38(1):4958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Wilke HJ, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J. 1998;7(2):148154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    McNally DS, Adams MA, Goodship AE. Can intervertebral disc prolapse be predicted by disc mechanics? Spine (Phila Pa 1976). 1993;18(11):15251530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Ramsey FL, Schafer DW. The Statistical Sleuth: A Course in Methods of Data Analysis. 3rd ed. Boston: BrooksCengage Learning; 2013:3435.

    • Search Google Scholar
    • Export Citation
  • 33.

    Chang U-K, Kim DH, Lee MC, Willenberg R, Kim S-H, Lim J. Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine. 2007;7(1):3339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Lee JK, Gomez J, Michelsen C, et al. In vitro biomechanical study to quantify range of motion, intradiscal pressure, and facet force of 3-level dynamic stabilization constructs with decreased stiffness. Spine (Phila Pa 1976). 2013;38(22):19131919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Jiang S, Li W. Biomechanical study of proximal adjacent segment degeneration after posterior lumbar interbody fusion and fixation: a finite element analysis. J Orthop Surg Res. 2019;14(1):135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Abode-Iyamah K, Kim SB, Grosland N, et al. Spinal motion and intradiscal pressure measurements before and after lumbar spine instrumentation with titanium or PEEK rods. J Clin Neurosci. 2014;21(4):651655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Lee CK, Langrana NA. Lumbosacral spinal fusion. A biomechanical study. Spine (Phila Pa 1976). 1984;9(6):574581.

  • 38.

    Rohlmann A, Neller S, Bergmann G, Graichen F, Claes L, Wilke HJ. Effect of an internal fixator and a bone graft on intersegmental spinal motion and intradiscal pressure in the adjacent regions. Eur Spine J. 2001;10(4):301308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Kurowski P, Kubo A. The relationship of degeneration of the intervertebral disk to mechanical loading conditions on lumbar vertebrae. Spine (Phila Pa 1976). 1986;11(7):726731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Newman HR, Bowles RD, Buckley MR. Viscoelastic heating of insulated bovine intervertebral disc. JOR Spine. 2018;1(1):e1002. doi: 10.1002/jsp2.1002

  • 41.

    Vergroesen P-PA, van der Veen AJ, van Royen BJ, Kingma I Smit TH. Intradiscal pressure depends on recent loading and correlates with disk height and compressive stiffness. Eur Spine J. 2014;23(11):23592368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Keyes DC, Compere EL. The normal and pathological physiology of the nucleus pulposus of the intervertebral disc: an anatomical, clinical, and experimental study. J Bone Joint Surg Am. 1932;14(4):897938.

    • Search Google Scholar
    • Export Citation
  • 43.

    Knell SC, Smolders LA, Steffen T, Pozzi A. Ex vivo computed tomography evaluation of loading position on morphometry of the caudal cervical intervertebral disk spaces of dogs. Am J Vet Res. 2019;80(3):235245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Park J, Shin JJ, Lim J. Biomechanical analysis of disk pressure and facet contact force after simulated two-level cervical surgeries (fusion and arthroplasty) and hybrid surgery. World Neurosurg. 2014;82(6):13881393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Berkson MH. Mechanical properties of the human lumbar spine flexibilities, intradiscal pressures, posterior element influences. Proc Inst Med Chic. 1977;31(5):138143.

    • Search Google Scholar
    • Export Citation
  • 46.

    Gardner-Morse MG, Stokes IA. Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture. J Orthop Res. 2003;21(3):547552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine (Phila Pa 1976). 1995;20(24):26902701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Johnson JA, da Costa RC, Bhattacharya S, Goel V, Allen MJ. Kinematic motion patterns of the cranial and caudal canine cervical spine. Vet Surg. 2011;40(6):720727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Koehler CL, Stover SM, LeCouteur RA, Schulz KS, Hawkins DA. Effect of a ventral slot procedure and of smooth or positive-profile threaded pins with polymethylmethacrylate fixation on intervertebral biomechanics at treated and adjacent canine cervical vertebral motion units. Am J Vet Res. 2005;66(4):678687.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Ex vivo study of the intradiskal pressure in the C6-7 intervertebral disk after experimental destabilization and distraction-fusion of the C5-C6 vertebrae in canine cadaveric specimens

Sebastian C. Knell Dr Med Vet1, Brian Park PhD1, Benjamin Voumard MSc2, and Antonio Pozzi DVM, MS1
View More View Less
  • 1 From the Clinic for Small Animal Surgery, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
  • | 2 Musculoskeletal Biomechanics, ARTORG Center for Biomedical Engineering Research, University of Bern, CH-3010 Bern, Switzerland.

Abstract

OBJECTIVE

To evaluate intradiskal pressure (IDP) in the C6-7 intervertebral disk (IVD) after destabilization and distraction-fusion of the C5-C6 vertebrae.

SAMPLE

7 cadaveric C4-T1 vertebral specimens with no evidence of IVD disease from large-breed dogs.

PROCEDURES

Specimens were mounted in a custom-made 6 degrees of freedom spinal loading simulator so the C5-C6 and C6-C7 segments remained mobile. One specimen remained untreated and was used to assess the repeatability of the IDP measurement protocol. Six specimens underwent 3 sequential configurations (untreated, partial diskectomy of the C5-6 IVD, and distraction-fusion of the C5-C6 vertebrae). Each construct was biomechanically tested under neutral, flexion, extension, and right-lateral bending loads. The IDP was measured with a pressure transducer inserted into the C6-7 IVD and compared between the nucleus pulposus and annulus fibrosus and across all 3 constructs and 4 loads.

RESULTS

Compared with untreated constructs, partial diskectomy and distraction-fusion of C5-C6 decreased the mean ± SD IDP in the C6-7 IVD by 1.3 ± 1.3% and 0.8 ± 1.3%, respectively. During motion, the IDP remained fairly constant in the annulus fibrosus and increased by 3.8 ± 3.0% in the nucleus pulposus. The increase in IDP within the nucleus pulposus was numerically greatest during flexion but did not differ significantly among loading conditions.

CONCLUSIONS AND CLINICAL RELEVANCE

Distraction-fusion of C5-C6 did not significantly alter the IDP of healthy C6-7 IVDs. Effects of vertebral distraction-fusion on the IDP of adjacent IVDs with degenerative changes, such as those in dogs with caudal cervical spondylomyelopathy, warrant investigation.

Contributor Notes

Address correspondence to Dr. Knell (sknell@vetclinics.uzh.ch).