Assessment of skin staples for augmentation of core tenorrhaphy in an ex vivo model of canine superficial digital flexor tendon laceration

Yi-Jen Chang 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607.

Search for other papers by Yi-Jen Chang in
Current site
Google Scholar
PubMed
Close
 BVetMed, MS
,
Daniel J. Duffy 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607.

Search for other papers by Daniel J. Duffy in
Current site
Google Scholar
PubMed
Close
 BVM&S, MS, FHEA
,
Lewis Gaffney 2Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina–Chapel Hill, Raleigh, NC 27695.

Search for other papers by Lewis Gaffney in
Current site
Google Scholar
PubMed
Close
 BS
,
Matthew B. Fisher 2Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina–Chapel Hill, Raleigh, NC 27695.

Search for other papers by Matthew B. Fisher in
Current site
Google Scholar
PubMed
Close
 PhD
, and
George E. Moore 3Department of Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906.

Search for other papers by George E. Moore in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

OBJECTIVE

To compare the biomechanical strength and incidence of gap formation among canine superficial digital flexor tendon (SDFT) constructs that underwent core tenorrhaphy only and those in which the core tenorrhaphy was augmented with skin staples or a continuous Silfverskiold cross-stitch (SXS) suture pattern.

SAMPLE

42 cadaveric forelimb SDFTs from 21 musculoskeletally normal dogs.

PROCEDURES

Tendons were randomly assigned to 3 groups (14 SDTFs/group), sharply transected, and repaired with a core locking-loop suture alone (group 1) or augmented with circumferential placement of skin staples (group 2) or a continuous SXS suture pattern (group 3) in the epitenon. All constructs underwent a single load-to-failure test. Yield, peak, and failure loads, incidence of gap formation, and mode of failure were compared among the 3 groups.

RESULTS

Mean yield, peak, and failure loads differed significantly among experimental groups and were greatest for group 3 and lowest for group 1 constructs. The incidence of gap formation differed among the tested groups and was lowest for group 3 and highest for group 1. The most common mode of construct failure was the suture pulling through the tendon for group 1, staple deformation for group 2, and epitendinous suture breakage for group 3.

CONCLUSIONS AND CLINICAL RELEVANCE

Results indicated epitendinous placement of skin staples around a core SDFT tenorrhaphy site improved the biomechanical strength and resistance to gap formation for the repair but was inferior to epitendinous placement of SXS sutures. Further research is necessary before skin staples are used for tenorrhaphy augmentation in clinical patients.

Abstract

OBJECTIVE

To compare the biomechanical strength and incidence of gap formation among canine superficial digital flexor tendon (SDFT) constructs that underwent core tenorrhaphy only and those in which the core tenorrhaphy was augmented with skin staples or a continuous Silfverskiold cross-stitch (SXS) suture pattern.

SAMPLE

42 cadaveric forelimb SDFTs from 21 musculoskeletally normal dogs.

PROCEDURES

Tendons were randomly assigned to 3 groups (14 SDTFs/group), sharply transected, and repaired with a core locking-loop suture alone (group 1) or augmented with circumferential placement of skin staples (group 2) or a continuous SXS suture pattern (group 3) in the epitenon. All constructs underwent a single load-to-failure test. Yield, peak, and failure loads, incidence of gap formation, and mode of failure were compared among the 3 groups.

RESULTS

Mean yield, peak, and failure loads differed significantly among experimental groups and were greatest for group 3 and lowest for group 1 constructs. The incidence of gap formation differed among the tested groups and was lowest for group 3 and highest for group 1. The most common mode of construct failure was the suture pulling through the tendon for group 1, staple deformation for group 2, and epitendinous suture breakage for group 3.

CONCLUSIONS AND CLINICAL RELEVANCE

Results indicated epitendinous placement of skin staples around a core SDFT tenorrhaphy site improved the biomechanical strength and resistance to gap formation for the repair but was inferior to epitendinous placement of SXS sutures. Further research is necessary before skin staples are used for tenorrhaphy augmentation in clinical patients.

All Time Past Year Past 30 Days
Abstract Views 106 0 0
Full Text Views 967 520 118
PDF Downloads 394 156 16
Advertisement