Investigation of a novel prosthesis technique for extracapsular stabilization of cranial cruciate ligament–deficient stifle joints in adult cattle

Joseph W. Lozier 1Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Joseph W. Lozier in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Andrew J. Niehaus 1Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Andrew J. Niehaus in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
C. Austin Hinds 1Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by C. Austin Hinds in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Sushmitha S. Durgam 1Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Sushmitha S. Durgam in
Current site
Google Scholar
PubMed
Close
 BVSC, PhD
,
Stephen C. Jones 1Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Stephen C. Jones in
Current site
Google Scholar
PubMed
Close
 MVB, MS
, and
Jeffrey Lakritz 1Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.
1Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Jeffrey Lakritz in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

OBJECTIVE

To evaluate a novel prosthesis technique for extracapsular stabilization of cranial cruciate ligament (CCL)–deficient stifle joints in adult cattle.

SAMPLE

13 cadaveric bovine stifle joint specimens.

PROCEDURES

In the first of 3 study phases, the most isometric points on the distal aspect of the femur (distal femur) and proximal aspect of the tibia (proximal tibia) were determined from measurements obtained from lateromedial radiographs of a stifle joint specimen maintained at angles of 135°, 90°, 65°, and 35°. During phase 2, 800-lb-test monofilament nylon leader line was cut into 73-cm-long segments. Each segment was secured in a loop by use of 2, 3, or 4 crimping sleeves such that there were 12 replicates for each construct. Each loop was distracted to failure at a constant rate of 1 mm/s. Mean force at failure and elongation and mode of failure were compared among the 3 constructs. During phase 3, bone tunnels were created in the distal femur and proximal tibia at the isometric points identified during phase 1 in each of 12 CCL-deficient stifle joint specimens. The 3-sleeve construct was applied to each specimen. Specimens were distracted to failure at a constant rate of 1 mm/s.

RESULTS

Among the 3 constructs evaluated, the 3-sleeve construct was considered optimal in terms of strength and amount of foreign material. In phase 3, all replicates failed because of suture slippage.

CONCLUSIONS AND CLINICAL RELEVANCE

Use of 800-lb-test monofilament nylon leader line as a prosthesis might be a viable alternative for extracapsular stabilization of CCL-deficient stifle joints in adult cattle. Further in vivo studies are necessary.

Abstract

OBJECTIVE

To evaluate a novel prosthesis technique for extracapsular stabilization of cranial cruciate ligament (CCL)–deficient stifle joints in adult cattle.

SAMPLE

13 cadaveric bovine stifle joint specimens.

PROCEDURES

In the first of 3 study phases, the most isometric points on the distal aspect of the femur (distal femur) and proximal aspect of the tibia (proximal tibia) were determined from measurements obtained from lateromedial radiographs of a stifle joint specimen maintained at angles of 135°, 90°, 65°, and 35°. During phase 2, 800-lb-test monofilament nylon leader line was cut into 73-cm-long segments. Each segment was secured in a loop by use of 2, 3, or 4 crimping sleeves such that there were 12 replicates for each construct. Each loop was distracted to failure at a constant rate of 1 mm/s. Mean force at failure and elongation and mode of failure were compared among the 3 constructs. During phase 3, bone tunnels were created in the distal femur and proximal tibia at the isometric points identified during phase 1 in each of 12 CCL-deficient stifle joint specimens. The 3-sleeve construct was applied to each specimen. Specimens were distracted to failure at a constant rate of 1 mm/s.

RESULTS

Among the 3 constructs evaluated, the 3-sleeve construct was considered optimal in terms of strength and amount of foreign material. In phase 3, all replicates failed because of suture slippage.

CONCLUSIONS AND CLINICAL RELEVANCE

Use of 800-lb-test monofilament nylon leader line as a prosthesis might be a viable alternative for extracapsular stabilization of CCL-deficient stifle joints in adult cattle. Further in vivo studies are necessary.

All Time Past Year Past 30 Days
Abstract Views 78 0 0
Full Text Views 770 443 40
PDF Downloads 308 118 10
Advertisement