• 1. Resnikoff S, Pascolini D, Etya'ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ 2004;82:844851.

    • Search Google Scholar
    • Export Citation
  • 2. Klein BE, Klein R, Sponsel WE, et al. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology 1992;99:14991504.

  • 3. Martin CL. Glaucoma, in Proceedings. Am Anim Hosp Assoc 1977;44:301303.

  • 4. Dreyer EB, Lipton SA. New perspectives in glaucoma. JAMA 1999;281:306308.

  • 5. Plummer CE, Regnier A, Gelatt KN. The canine glaucomas. In: Gelatt KN, Gilger BC, Kern TJ, eds. Veterinary ophthalmology. 5th ed. Ames, Iowa: Wiley-Blackwell, 2013;10501145.

    • Search Google Scholar
    • Export Citation
  • 6. Barnett KC. Glaucoma in the dog. J Small Anim Pract 1970;11:113128.

  • 7. Brooks DE. Glaucoma in the dog and cat. Vet Clin North Am Small Anim Pract 1990;20:775797.

  • 8. Slater MR, Erb HN. Effects of risk factors and prophylactic treatment on primary glaucoma in the dog. J Am Vet Med Assoc 1986;188:10281030.

    • Search Google Scholar
    • Export Citation
  • 9. Boevé MH, Stades FC. Glaucoma in dogs and cats. Review and retrospective evaluation of 421 patients. I. Pathobiological background, classification and breed incidence. Tijdschr Diergeneeskd 1985;110:219227.

    • Search Google Scholar
    • Export Citation
  • 10. Boevé MH, Stades FC. Glaucoma in dogs and cats. Review and retrospective evaluation of 421 patients. II. Clinical aspects. Tijdschr Diergeneeskd 1985;110:228236.

    • Search Google Scholar
    • Export Citation
  • 11. Werner EB. Normal-tension glaucoma. In: Ritch R, Shields MB, Krupin T, eds. The glaucomas. St Louis: Mosby Year Book, 1996:769797.

  • 12. Goldberg I. Relationship between intraocular pressure and preservation of visual field in glaucoma. Surv Ophthalmol 2003;48:S3S7.

    • Search Google Scholar
    • Export Citation
  • 13. Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res 1999;18:3957.

  • 14. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995;36:774786.

    • Search Google Scholar
    • Export Citation
  • 15. Cioffi GA, Wang L, Fortune B, et al. Chronic ischemia induces regional axonal damage in experimental primate optic neuropathy. Arch Ophthalmol 2004;122:15171525.

    • Search Google Scholar
    • Export Citation
  • 16. Cioffi GA, Sullivan P. The effect of chronic ischemia on the primate optic nerve. Eur J Ophthalmol 1999;9:S34S36.

  • 17. Spaeth GL. Development of glaucomatous changes of the optic nerve. In: Varma R, Spaeth GL, Parker KW, eds. The optic nerve in glaucoma. Philadelphia: JB Lippincott, 1993;6382.

    • Search Google Scholar
    • Export Citation
  • 18. Baltmr A, Duggan J, Nizari S, et al. Neuroprotection in glaucoma—is there a future role? Exp Eye Res 2010;91:554566.

  • 19. Ofri R, Narfström K. Light at the end of the tunnel? Advances in understanding and treatment of glaucoma and inherited retinal degeneration. Vet J 2007;174:1022.

    • Search Google Scholar
    • Export Citation
  • 20. Willis AM, Diehl KA, Robbin TE. Advances in glaucoma therapy. Vet Ophthalmol 2002;5:917.

  • 21. Zhao J, Wang S, Zhong W, et al. Oxidative stress in the trabecular meshwork (review). Int J Mol Med 2016;38:9951002.

  • 22. Yang X, Hondur G, Tezel G. Antioxidant treatment limits neuroinflammation in experimental glaucoma. Invest Ophthalmol Vis Sci 2016;57:23442354.

    • Search Google Scholar
    • Export Citation
  • 23. Sande PH, Álvarez J, Calcagno J, et al. Preliminary findings on the effect of melatonin on the clinical outcome of cataract surgery in dogs. Vet Ophthalmol 2016;19:184194.

    • Search Google Scholar
    • Export Citation
  • 24. Crooke A, Huete-Toral F, Martínez-Águila A, et al. Ocular disorders and the utility of animal models in the discovery of melatoninergic drugs with therapeutic potential. Expert Opin Drug Discov 2012;7:9891001.

    • Search Google Scholar
    • Export Citation
  • 25. Leonardi A, Bucolo C, Drago F, et al. Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. Int J Pharm 2015;478:180186.

    • Search Google Scholar
    • Export Citation
  • 26. Ismail SA, Mowafi HA. Melatonin provides anxiolysis, enhances analgesia, decreases intraocular pressure, and promotes better operating conditions during cataract surgery under topical anesthesia. Anesth Analg 2009;108:11461151.

    • Search Google Scholar
    • Export Citation
  • 27. Samples JR, Krause G, Lewy AJ. Effect of melatonin on intraocular pressure. Curr Eye Res 1988;7:649653.

  • 28. Martínez-Águila A, Fonseca B, Pérez de Lara MJ, et al. Effect of melatonin and 5-methoxycarbonylamino-N-acetyltryptamine on the intraocular pressure of normal and glaucomatous mice. J Pharmacol Exp Ther 2016;357:293299.

    • Search Google Scholar
    • Export Citation
  • 29. Crooke A, Huete-Toral F, Martínez-Águila A, et al. Melatonin and its analog 5-methoxycarbonylamino-N-acetyltryptamine potentiate adrenergic receptor-mediated ocular hypotensive effects in rabbits: significance for combination therapy in glaucoma. J Pharmacol Exp Ther 2013;346:138145.

    • Search Google Scholar
    • Export Citation
  • 30. Hardeland R. Melatonin—more than just a pineal hormone. Biomed J Sci Tech Res 2017;1:14.

  • 31. Tosini G, Iuvone M, Boatright JH. Is the melatonin receptor type 1 involved in the pathogenesis of glaucoma? (Erratum published in J Glaucoma 2013;22:598). J Glaucoma 2013;22:S49S50.

    • Search Google Scholar
    • Export Citation
  • 32. Tosini G, Baba K, Hwang CK, et al. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res 2012;103:8289.

    • Search Google Scholar
    • Export Citation
  • 33. Lundmark PO, Pandi-Perumal SR, Srinivasan V, et al. Role of melatonin in the eye and ocular dysfunctions. Vis Neurosci 2006;23:853862.

    • Search Google Scholar
    • Export Citation
  • 34. Wiechmann AF, Rada JA. Melatonin receptor expression in the cornea and sclera. Exp Eye Res 2003;77:219225.

  • 35. Meyer P, Pache M, Loeffler KU, et al. Melatonin MT-1-receptor immunoreactivity in the human eye. Br J Ophthalmol 2002;86:10531057.

  • 36. Alarma-Estrany P, Pintor J. Melatonin receptors in the eye: location, second messengers and role in ocular physiology. Pharmacol Ther 2007;113:507522.

    • Search Google Scholar
    • Export Citation
  • 37. Plumb DC. Melatonin. In: Plumb's veterinary drug handbook. 8th ed. Ames, Iowa: Blackwell, 2005;915916.

  • 38. Miyamoto M, Nishikawa H, Doken Y, et al. The sleeppromoting action of ramelteon (TAK-375) in freely moving cats. Sleep 2004;27:13191325.

    • Search Google Scholar
    • Export Citation
  • 39. Frank LA, Hnilica KA, Oliver JW. Adrenal steroid hormone concentrations in dogs with hair cycle arrest (alopecia X) before and during treatment with melatonin and mitotane. Vet Dermatol 2004;15:278284.

    • Search Google Scholar
    • Export Citation
  • 40. Schäfer-Somi S. Effect of melatonin on the reproductive cycle in female cats: a review of clinical experiences and previous studies. J Feline Med Surg 2017;19:512.

    • Search Google Scholar
    • Export Citation
  • 41. Gelaleti GB, Borin TF, Maschio-Signorini LB, et al. Melatonin and IL-25 modulate apoptosis and angiogenesis mediators in metastatic (CF-41) and non-metastatic (CMT-U229) canine mammary tumour cells. Vet Comp Oncol 2017;15:15721584.

    • Search Google Scholar
    • Export Citation
  • 42. Vollmer C, Weber APM, Wallenfang M, et al. Melatonin pretreatment improves gastric mucosal blood flow and maintains intestinal barrier function during hemorrhagic shock in dogs. Microcirculation 2017;24:e12345.

    • Search Google Scholar
    • Export Citation
  • 43. Del Sole, MJ, Sande, PH, Fernandez, et al. Therapeutic benefit of melatonin in experimental feline uveitis. J Pineal Res 2012;52:2937.

    • Search Google Scholar
    • Export Citation
  • 44. Pintor J, Peláez T, Hoyle CH, et al. Ocular hypotensive effects of melatonin receptor agonists in the rabbit: further evidence for an MT3 receptor. Br J Pharmacol 2003;138:831836.

    • Search Google Scholar
    • Export Citation
  • 45. Pescosolido N, Gatto V, Stefanucci A, et al. Oral treatment with the melatonin agonist agomelatine lowers the intraocular pressure of glaucoma patients. Ophthalmic Physiol Opt 2015;35:201205.

    • Search Google Scholar
    • Export Citation
  • 46. Quinteros D, Vicario-de-la-Torre M, Andrés-Guerrero V, et al. Hybrid formulations of liposomes and bioadhesive polymers improve the hypotensive effect of melatonin analogue 5-MCA-NAT in rabbit eyes. PLoS One 2014;9:e110344.

    • Search Google Scholar
    • Export Citation
  • 47. Alarma-Estrany P, Guzman-Aranguez A, Huete F. Design of novel melatonin analogs for the reduction of intraocular pressure in normotensive rabbits. J Pharmacol Exp Ther 2011;337:703709.

    • Search Google Scholar
    • Export Citation
  • 48. Martínez-Águila A, Fonseca B, Bergua A, et al. Melatonin analogue agomelatine reduces rabbit's intraocular pressure in normotensive and hypertensive conditions. Eur J Pharmacol 2013;701:213217.

    • Search Google Scholar
    • Export Citation
  • 49. Serle JB, Wang RF, Peterson WM, et al. Effect of 5-MAC-NAT, a putative melatonin MT3 receptor agonist, on intraocular pressure in glaucomatous monkey eyes. J Glaucoma 2004;13:385388.

    • Search Google Scholar
    • Export Citation
  • 50. Mykheĩtseva IM. Protective action of melatonin in experimental glaucoma in rats. Fiziol Zh 2013;59:7883.

  • 51. Agorastos A, Huber CG. The role of melatonin in glaucoma: implications concerning pathophysiological relevance and therapeutic potential. J Pineal Res 2011;50:17.

    • Search Google Scholar
    • Export Citation
  • 52. Rosenstein RE, Pandi-Perumal SR, Srinivasan V, et al. Melatonin as a therapeutic tool in ophthalmology: implications for glaucoma and uveitis. J Pineal Res 2010;49:113.

    • Search Google Scholar
    • Export Citation
  • 53. Sánchez-Barceló EJ, Mediavilla MD, Tan DX, et al. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 2010;17:20702095.

    • Search Google Scholar
    • Export Citation
  • 54. Belforte NA, Moreno MC, de Zavilía N, et al. Melatonin: a novel neuroprotectant for the treatment of glaucoma. J Pineal Res 2010;48:353364.

    • Search Google Scholar
    • Export Citation
  • 55. Mozaffarieh M, Flammer J. Is there more to glaucoma treatment than lowering IOP? Surv Ophthalmol 2007;52:S174S179.

  • 56. Mozaffarieh M, Flammer J. A novel perspective on natural therapeutic approaches in glaucoma therapy. Expert Opin Emerg Drugs 2007;12:195198.

    • Search Google Scholar
    • Export Citation
  • 57. Lundmark PO, Pandi-Perumal SR, Srinivasan V, et al. Melatonin in the eye: implications for glaucoma. Exp Eye Res 2007; 84:10211030.

  • 58. Siu AW, Maldonado M, Sanchez-Hidalgo M, et al. Protective effects of melatonin in experimental free radical–related ocular diseases. J Pineal Res 2006;40:101109.

    • Search Google Scholar
    • Export Citation
  • 59. Head KA. Natural therapies for ocular disorders, part two: cataracts and glaucoma. Altern Med Rev 2001;6:141166.

  • 60. Harpsøe NG, Andersen LP, Gögenur I, et al. Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin Pharmacol 2015;71:901909.

    • Search Google Scholar
    • Export Citation
  • 61. Andersen LP, Werner MU, Rosenkilde MM, et al. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol Toxicol 2016;17:8.

    • Search Google Scholar
    • Export Citation
  • 62. Sääf J, Wetterberg L, Bäckström M, et al. Melatonin administration to dogs. J Neural Transm 1980;49:281285.

  • 63. Yeleswaram K, McLaughlin LG, Knipe JO, et al. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal Res 1997;22:4551.

    • Search Google Scholar
    • Export Citation
  • 64. Lavoie J, Rosolen SG, Chalier C, et al. Negative impact of melatonin ingestion on the photopic electroretinogram of dogs. Neurosci Lett 2013;543:7883.

    • Search Google Scholar
    • Export Citation
  • 65. Garzón-Ariza A, Guisado A, Galán A, et al. Diurnal variations in intraocular pressure and central corneal thickness and the correlation between these factors in dogs. Vet Ophthalmol 2018;21:464470.

    • Search Google Scholar
    • Export Citation
  • 66. Skorobohach BJ, Ward DA, Hendrix DV. Effects of oral administration of methazolamide on intraocular pressure and aqueous humor flow rate in clinically normal dogs. Am J Vet Res 2003;64:183187.

    • Search Google Scholar
    • Export Citation
  • 67. Sarchahi AA, Abbasi N, Gholipour MA. Effects of an unfixed combination of latanoprost and pilocarpine on the intraocular pressure and pupil size of normal dogs. Vet Ophthalmol 2012;15:6470.

    • Search Google Scholar
    • Export Citation
  • 68. Kwak J, Kang S, Lee E, et al. Effect of preservative-free tafluprost on intraocular pressure, pupil diameter, and anterior segment structures in normal canine eyes. Vet Ophthalmol 2017;20:3439.

    • Search Google Scholar
    • Export Citation
  • 69. Broadwater JJ, Schorling JJ, Herring IP, et al. Effect of body position on intraocular pressure in dogs without glaucoma. Am J Vet Res 2008;69:527530.

    • Search Google Scholar
    • Export Citation
  • 70. Grigg-Damberger MM, Ianakieva D. Poor quality control of over-the-counter melatonin: what they say is often not what you get. J Clin Sleep Med 2017;13:163165.

    • Search Google Scholar
    • Export Citation

Advertisement

Effect of orally administered melatonin on intraocular pressure of ophthalmologically normal dogs

View More View Less
  • 1 1Eye Care for Animals, 17395 TX-249, Houston, TX 77064.
  • | 2 2Eye Care for Animals, 12419 Metric Blvd, Austin, TX 78758.
  • | 3 3Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843.

Abstract

OBJECTIVE

To determine the effect of orally administered melatonin on the intraocular pressure (IOP) of ophthalmologically normal dogs.

ANIMALS

20 ophthalmologically normal dogs (40 eyes).

PROCEDURES

In a randomized crossover study, each dog received a 7-day regimen of melatonin (0.1 to 0.2 mg/kg, PO, q 12 h) and a placebo (150 mg of lactose powder in a capsule, PO, q 12 h), with a 7-day washout period between treatment regimens. Rebound tonometry was used to measure the IOP in both eyes of each dog 5 times at 2-hour intervals on days 0 (before administration of the first dose), 2, 4, and 7 (after administration of the last dose) of each treatment period. Repeated-measures ANOVA was used to evaluate the effects of treatment, day, and IOP measurement time within day on IOP.

RESULTS

Intraocular pressure was not significantly associated with treatment but was associated with day and the interaction between day and IOP measurement time within day. The mean ± SD IOP was 14.26 ± 2.95 and 14.34 ± 2.69 mm Hg for the melatonin and placebo regimens, respectively. Within each treatment period, the mean IOP tended to decrease from day 0 to 7 as well as within each day, which was attributed to the dogs becoming acclimated to the study protocol and natural diurnal variations in IOP.

CONCLUSIONS AND CLINICAL RELEVANCE

Results indicated that oral administration of melatonin (0.1 to 0.2 mg/kg, q 12 h for 7 d) did not significantly affect the IOP of ophthalmologically normal dogs.

Abstract

OBJECTIVE

To determine the effect of orally administered melatonin on the intraocular pressure (IOP) of ophthalmologically normal dogs.

ANIMALS

20 ophthalmologically normal dogs (40 eyes).

PROCEDURES

In a randomized crossover study, each dog received a 7-day regimen of melatonin (0.1 to 0.2 mg/kg, PO, q 12 h) and a placebo (150 mg of lactose powder in a capsule, PO, q 12 h), with a 7-day washout period between treatment regimens. Rebound tonometry was used to measure the IOP in both eyes of each dog 5 times at 2-hour intervals on days 0 (before administration of the first dose), 2, 4, and 7 (after administration of the last dose) of each treatment period. Repeated-measures ANOVA was used to evaluate the effects of treatment, day, and IOP measurement time within day on IOP.

RESULTS

Intraocular pressure was not significantly associated with treatment but was associated with day and the interaction between day and IOP measurement time within day. The mean ± SD IOP was 14.26 ± 2.95 and 14.34 ± 2.69 mm Hg for the melatonin and placebo regimens, respectively. Within each treatment period, the mean IOP tended to decrease from day 0 to 7 as well as within each day, which was attributed to the dogs becoming acclimated to the study protocol and natural diurnal variations in IOP.

CONCLUSIONS AND CLINICAL RELEVANCE

Results indicated that oral administration of melatonin (0.1 to 0.2 mg/kg, q 12 h for 7 d) did not significantly affect the IOP of ophthalmologically normal dogs.

Contributor Notes

Address correspondence to Dr. Scott (EScott@cvm.tamu.edu).